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• Introduction（拉压变形简介）

• Diagram of Axial Forces（轴力图）

• Concept of Stresses（应力的概念）

• General Stress State of a Point（点的一般应力状态）

• Stresses Acting on Cross Sections（拉压杆横截面上的应力）

• Saint-Venant’s Principle（圣维南原理）

• Stresses Acting on Oblique Sections（拉压杆斜截面上的应力）

• Deformation of Axially Loaded Bars（拉压杆的变形）

• Elastic Constants of Engineering Materials（常见工程材料的弹性常数）

• Nonuniform Tension/compression（非均匀拉压）

• Strain Energy（应变能）

• Strain Energy Density（应变能密度）

• Mechanical Behavior of Materials（材料的力学性能）

• Nominal Stress-strain Curve（名义应力应变曲线）

• Stress and Deformation Indices of Low-carbon Steel（低碳钢的应力和变形指标）

Contents
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• Yield Stress, Ultimate Stress and Percent Elongation of Engineering Materials

（常见工程材料的屈服应力、强度极限和断后伸长率）

• Strain (Work) Hardening（冷作硬化）

• Mechanical Behavior of General Ductile Materials under Tension（塑性材料的

拉伸力学性能）

• Mechanical Behavior of Brittle Materials under Tension（脆性材料的拉伸）

• Mechanical Behavior of Low-carbon Steel under Compression（低碳钢的压缩）

• Mechanical Behavior of Cast Iron under Compression（铸铁的压缩力学性能）

• Mechanical Behavior of Creet（混凝土的力学性能）

• Mechanical Behavior of Wood（木材的力学性能）

• Mechanical Behavior of Composite Materials（复合材料的力学性能）

• Mechanical Behavior of Viscoelastic Materials（粘弹性材料的力学性能）

• Strength Condition（强度条件）

• Failure of Brittle vs. Ductile Bars under Tension（脆性和塑性杆件的拉伸失效）

• Stress Concentration（拉压杆中的应力集中现象）
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F F

F F

• Load: equal and opposite forces along bar axis

• Deformation: extension (contraction) along bar axis and 

contraction (extension) transversely

Introduction
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Internal Force

• The change of interaction force among various parts of a 

solid body, introduced by external loading.

The Method of Section

F1
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Internal Forces Illustrated by Method of Sections
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FSz

Mz

• Coordinate: a right-handed system

O: Centroid of the cross-section

x: Cross-section normal (Bar axis)

• Forces: FN, FSy, FSz

• Moments: T, My, Mz

• Axial Force (FN)

o Along bar axis

o Extends or contracts the bar along bar axis

o Positive for tension; Negative for compression

o Assuming positive for all unknown axial forces

FN

(+)

FN

(-)

Sign Convention of Axial Forces
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• Sectioning the member

• Taking either portion

• Substituting the other portion with internal forces

• Equilibrating

Procedure of Method of Sections

F F
m

m

F FN

FN = -F

F F
m

m

F FN

FN = F
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• Abscissa: position of cross sections

• Ordinate: axial force

• Positive for tension; negative for compression.

F F
m

m
FN

x

Diagram of Axial Forces

9



• Plot the diagram of axial force

A B C D3 kN 2 kN/m 1 kN

2 m 2 m 2 m

1. Internal force in AB、CD

N

N

3 kN

1 kN
AB

CD

F

F



 

2. Internal force in BC 

3 kN

2 m x

FN x

,max 3 kNF N

3. Diagram of axial force  N kNF 3

1

4. Maximum internal force

Sample Problem

   N 3 2 0 2F x x x   

• Solution
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m

t

ζ



Units: Pa (N/m2), 1 MPa = 106 Pa, 1 GPa = 109 Pa.

m

0
lim
A

Ft
A 




Given ΔF as the force transmitted across ΔA, a stress traction vector 

can be defined as

F

A

n

Concept of Stresses
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ζxx

ζyy

ζzz

ζxy

ζxz

ζzx

ζzy

ζyx

ζyz
ζzz

ζxx

ζyy

ζyx
ζyz

ζzy

ζzx

ζxz

ζxy

dx

dz

dy

x

y

z

All stress components shown in the above figure are positive.

General Stress State of a Point
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FN
ζ

N d d
A A

F A A A     

Longitudinal
Transverse

FF

NF

A
 

Assumption: stresses are uniformly distributed on the cross sections 

of axially loaded bars (Saint-Venant’s Principle)

Stresses Acting on Cross Sections
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• Loads transmitted through rigid 

plates result in uniform distribution 

of stress and strain.

• Saint-Venant’s Principle:  

Stress distribution may be assumed 

independent of the mode of load 

application except in the immediate 

vicinity of load application points.

• Stress and strain distributions become 

uniform at a relatively short distance 

from the load application points.

• Concentrated loads result in large 

stresses in the vicinity of the load 

application point.

Saint-Venant’s Principle

14



NF

A
 

1 2

2 1

2

2A A

A A

 





Sample Problem
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Sample Problem

• For the compound roof 

structure shown, determine the 

axial stress developed in 

members AE and EG. q = 20 

kN/m, AAE = AEG = 23 cm2. 

1. Reaction force

0  177.4 kN
2

y RA RB

ql
F F F    

• Solution

 

   

2
0 4.37 4.5

2

        4.37 4.5 1.2 1

356 kN

C

RA EG

EG

q
M

F F

F

  

   

 



2. Axial force in EG
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3. Equilibrium at joint E

2 2

cos

4.37
     

4.37 1

366 kN

EG AE

AE

AE

F F

F

F






 

4. Axial stresses in members 

AE and EG

 
 
 
 

3

4

3

4

356 10
155 MPa

23 10

366 10
159 MPa

23 10

EG
EG

EG

AE
AE

AE

F

A

F

A









  

  
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2

cos

cos cos

cos cos

sin sin 2
2

AA

F F
p

A A

p

p







 

 



  

   


  



  

 

 

α: defined as the angle measured from cross section normal to 

oblique cross section normal.

Stresses Acting on Oblique Sections
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• On cross section: maximum normal stress; zero shearing stress.

0 0

0 2 0

max 45 45
sin(90 ) , cos (45 )

2 2 2

  
       

• On 45°oblique cross section: maximum shearing stress.

19



• On 90°oblique cross section: zero normal and shearing stress.
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• Longitudinal strain:

L
L

  b
b

  

• Transverse strain:

• Longitudinal (axial) & transverse strains

L

⊿L＋L

b b b 

Deformation of Axially Loaded Bars

   

• Connection between longitudinal and transverse strain

• ν: Poisson’s ratio

/   
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N NLF F L
L L L

E AE EA


    

          F bc Ka bc EaL KK       

• EA: Tension (Compression) rigidity







22

Deformation of Axially Loaded Bars

• Consider a differential cube of side length a, b and c

• The measurement of axial deformation

• This linear relation is referred to as the one-dimensional Hooke’s 

law, with E denoting the Young’s modulus.



Elastic Constants of Engineering Materials
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Elastic Constants of Engineering Materials
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Nonuniform Tension/compression

• Pure tension/compression formula refers to a prismatic bar subjected 

to axial forces acting only at the ends.

 

 
N

0 0

L L F x dx
L d L

EA x
    

Ni i
i

i i i i

F L
L L

E A
    
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• Nonuniform tension/compression differs from pure tension in that 

the bar need not to be prismatic and the applied axial forces may act 

anywhere along the axis of the bar.

• Bars in nonuniform tension/compression can be analyzed by 

applying the formulas of pure tension/compression to finite segments 

of the bar and then adding the results, or by applying the formulas to 

differential elements of the bar and then integrating.



• Consider an axially loaded bar with varied cross section. Given: E

= 210 GPa; Section 1 (circular): d1 = 20 mm; Section 2 (square):

side length a = 25 mm, 2 = -30 MPa; Section 3 (circular) 

d3=12mm. Find: Total change in bar length △L.

F F1
2

3

0.2 m 0.4 m 0.2 m

Sample Problem
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• Solution:

2 2

2 2 30 MPa 25 mm 18.75 kNF A     

31 2 N 3N 1 N 2

2 29 2

1 2 3

18750 0.2 0.4 0.2
0.272mm 

π 0.02 π 0.012210 10 0.025

4 4

F LF L F L
L

EA EA EA

 
 

         
   

 
 
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Sample Problem

• Determine the elongation of the 

bar due to the end load P.

• Solution:

 
 

 

 

 

   

 

N

20 0

20

0

4

4

4 1

4 1 1 4

L L

L

A B A

A B A
L

B A

A B A

L

B A
A B A

B A A B A B

F dx Pdx

EA x x
E d d d

L

x
d d d d

PL L

E d d x
d d d

L

PL

xE d d
d d d

L

PL PL

E d d d d Ed d







 

  
 

  
 

 
  

 
  

  
 

 
 

  
   

 

 
   

  

 



 

   
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4 4

x A B A

x
A B A

x
d d d d

L

d x
A x d d d

L

 

  

 
    

 
• For the special case of a prismatic bar:

2

4
L

PL PL

Ed EA
  

• Cannot be assumed as a prismatic bar 

that has the diameter (dA+dB)/2.



• Solution:

• Deformation of a uniform bar due to gravity. Given: cross section 

area A, density ρ,  Young’s modulus E. Find: Maximum normal 

stress and axial length change.

2

0 0

( )d ( )d d
( )

2

l l
F x x F x x gAx x gL

L L
EA EA EA E

 
      

N Nd

ρgAL

—

Sample Problem

2. Deformation:

1. Axial forces and stresses

q=ρgA;  FN(x)= ρgAx;  ζ(x)= FN(x)/A= ρgx,  ζmax= ρgL

28

FN(x)

FN(x)
dx

L

x

q
FN(x)

x



• The rigid bar BDE is supported by two 

links AB and CD.  

• Link AB is made of aluminum (E = 70 

GPa) and has a cross-sectional area of 

500 mm2.  Link CD is made of steel (E = 

200 GPa) and has a cross-sectional area 

of (600 mm2).  

• For the 30-kN force shown, determine 

the deflection a) of B, b) of D, and c) of 

E.

SOLUTION:

• Apply a free-body analysis to the bar 

BDE to find the forces exerted by 

links AB and DC.

• Evaluate the deformation of links AB

and DC or the displacements of B

and D.

• Work out the geometry to find the 

deflection at E given the deflections 

at B and D.

29

Sample Problem



• Displacement of B:

  

  
m10514

Pa1070m10500

m3.0N1060

6

926-

3









AE

PL
B

  mm 514.0B

• Displacement of D:

  

  
m10300

Pa10200m10600

m4.0N1090

6

926-

3









AE

PL
D

  mm 300.0D

• Free body:  Bar BDE

 

 

0

0 30kN 0.6m 0.2m

90kN   

0

0 30kN 0.4m 0.2m

60kN   

B

CD

CD

D

AB

AB

M

F

F tension

M

F

F compression



    

 



    

 





• SOLUTION:



• Displacement of E:

 

mm 7.73

mm 200

mm 0.300

mm 514.0











x

x

x

HD

BH

DD

BB

  mm 928.1E

 

mm 928.1

mm 7.73

mm7.73400

mm 300.0











E

E

HD

HE

DD

EE





31



• Given: tension rigidity of bar 1, 2 and 3 = EA, AB rigid, F and L. 

Find: the vertical and horizontal displacement at C.

Sample Problem

2
C C

FL
x y

EA
   

32



• Determine the vertical and horizontal displacement of A. AB is rigid.

Sample Problem

045

F

D C

E
B

A

33
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F

A

E

B

O

A

A
E

E
B

yA

xA
EDL

B

BCL

,           B B O E E O A A O E E O           

      

BC

ED

yy x

ED

L E B E O EB E OB B B O
L E O E O E O EO EB OB B BE E E O

AA A A O AE EOA A A O A E E O AE E O

E E E O L E O E O

                      
     

                 
      

• Hint:

045

F

D C

E
B

A
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• A circular tube of inner diameter d = 60 mm and outer diameter D = 

80 mm is subjected to an axial load of F = 200 kN, determine the 

wall thickness under the deformed state. E = 200 GPa, ν = 0.3.

Sample Problem (Poisson’s Ratio)

• Solution:
 

    
 

    
 

    
      
      

3

6

9 2 2 6

6 6

6

6

6

200 10
455 10

200 10 80 60 10 4

0.3 455 10 136.5 10

1 10 1 136.5 10 9.998635 mm
2

1 251.327412 1 136.5 10 251.293106 mm

1 188.495559 1 136.5 10 188.469830 mm

F

E EA

D d

S D

s d






 

 

 

 





 







   


      


     

     

     

F

• Poisson’s ratio is the same for all transverse directions. (Isotropy)



Sample Problem (Large Deformation)

36

• Given: d = 1 mm, ε = 0.0035, E = 

210 GPa. Determine the axial 

stress in wire, the displacement of 

C, and the force F.

• Solution:

  9210 10 0.0035 735 MPaE   1. Axial stress in the wire:

2. The displacement of C

  

    
2 2 2 2

1 0.0035 0.0035 m

2 2 1 0.0035 0.0035 0.0837 m

AC AC

C AC AC AC AC AC AC

L L

L L L L L L

   

         

3. The force F

       2
6 3

N

0.0837
2 sin 2 2 735 10 10 4 96.3 N

1.0035

C

AC

F F BAC A
L

  
    



(Equilibrium must be analyzed under the deformed state.)



• For the thin-walled pressure vessel shown, D, δ, and p denote the 

vessel inner diameter, wall thickness and pressure respectively. 

Determine: the axial stress, circumferential stress, and the 

elongation of vessel circumference, diameter and length. 

p

Ｄ

l

Sample Problem (Pressure Vessel)

37

δ



Ｄ

δ

a

a

p D 2

４δa  D

c c

p

   
axial

2

a

a

0

π π 4

4

F

D p D

pD

 






 

 



 

circumferential

0

0

2 sin
2

2

2

c

c

c

F

D
p d

b pbD

pD

b b


   

 






  

 

 





38

• b: an arbitrarily chosen axial length



2c pD • Circumferential stress:

• Axial stress:

• Radial stress:
D p  

4a pD 

2

pD



4

pD



39



• Elongation of the vessel circumference

N t

c

AF L

EA


  

    D

E A

    2 2

1
2 2 2

DpD pD pD

E E D E

    

  

  
    

 

• Elongation of the vessel diameter
2 2

1
2 2

t
D

pD pD

E D E



  

  
     

 

• Transverse strain

        
2 2

t D
c D

t D

pD pD

L E L E
 

 


 
   

• Elongation of the vessel length

N a

a

AF L

EA


  

  l
E A 4

pDl

E

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F

L

L1

 
22

N
N

N1
          

2 2 2

EA LF L
U W F L

EA L

F L
L

EA




 
    


 


F

O △L

• Strain energy is developed in solid 

materials due to elastic deformation 

induced by external loading.

• The one-half is due to the 

assumption that external loading is 

applied gradually, starting from zero.

Strain Energy

41

• Strain energy and work in pure tension/compression



• Nonuniform tension/compression
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Strain Energy
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L L F x dx
U dU
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Strain Energy Density (Energy per Unit Volume)

   
1 1

    
2 2

1

2

U F L bc a

U
u

V

 



     

  



• Consider a differential cube of side length a, b and c

• Total strain energy calculated from density

2

N N N1 1 1

2 2 2 2V V L L L

F F F dx
U udV dV A dx A dx

A EA EA
         

2

2

NF L
U

EA


• For constant E, FN, and A
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• Mechanical behavior of materials focus on the strength and 

deformation characteristics of solid materials under external loading.

L = 10d , 5d = 11.3√A, 5.65√A

L

d b

L

L = 13d, 13b• Compressive specimen:

44

Mechanical Behavior of Materials

L = 11.3b, 5.65b.

• For circular tensile specimen • For square tensile specimen

• Tensile specimen



Mechanical Behavior of Materials
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Nominal Stress-strain Curve

• Find more animations at http://em2lab.yolasite.com/.
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O ε  

ζ

a

c

d

b

ζe ζp
ζs

ζb

Stress-strain Diagram

• p: Proportional limit

• e: Elastic limit

• Y: Yield stress

• u: Ultimate stress

Stress and Deformation Indices of Low-carbon Steel

• Percent elongation:

δ = (Lfinal - Linitial ) / Linitial× 100%

• Percent reduction in area

ψ = (Ainitial - Afinal) / Ainitial× 100%



Yield Stress, Ultimate Stress and Percent Elongation



Yield Stress, Ultimate Stress and Percent Elongation
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Yield Stress, Ultimate Stress and Percent Elongation
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O ε  

ζ

1
2

3

• Based on the three stress-strain curves 

shown in the figure, which one of the 

following regarding ultimate stress, 

Young’s modulus and percent 

elongation is correct?

A：      

     

     

1 2 3

1 2 3

1 2 3

u u u

E E E

  

  

 

 

 

     

     

     

2 1 3

2 1 3

1 2 3

u u u

E E E

  

  

 

 

 

B：

     

     

     

3 1 2

3 1 2

3 2 1

u u u

E E E

  

  

 

 

 

C：

     

     

     

1 2 3

2 1 3

2 1 3

u u u

E E E

  

  

 

 

 

D：

Exercise
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• Unloading at point B during hardening 

stage down to zero force. EB almost 

parallel to OA. (Unloading law)

• Deformation in the hardening stage is 

composed of elastic (△Le) and plastic 

elongation (△Lp).

• If the test sample is reloaded at point E, 

the linear elastic (proportional) limit 

substantially increases. As a result, the 

overall deformation the sample can 

endure decreases.

• In engineering practice, strain 

hardening is often employed to increase 

the maximum resistance force within 

linear elastic scope.

F

O △L  △Lp △Le

A
B

E F

Force-displacement Diagram

Strain (Work) Hardening

Stress-strain Diagram
ε  

B

O

ζ

A

p e
E F
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• Given: E = 200 GPa, unloading at ζ = 310 MPa during  hardening 

stage, total strain εe+ εp = 0.02155. Find: εe and εp.





3
1
0

0.0215

Sample Problem
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• Solution:

00155.0
1000200

310





E
e




eep   02.0





3
1

0

0.0215

• Remark: in experimental reports, strain often takes the unit of 

micro-strain, i.e. 0.02 (ε)=20000 (με)

61 10 
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• Low-carbon steel loading and unloading experiments. Given: E = 

210 GPa, ζP = 210 MPa. Find: 1. normal stress at the strain level ε = 

0.001 (under linear elastic limit); 2. normal stress at a point in 

hardening stage, unloading from which results in ε = 0.08 and εp = 

0.078.

• Solution：

1. Under linear elastic limit

   9210 10 0.001 Pa 210 MPa pE       

2. During hardening stage:

   9210 10 (0.08 0.078) Pa 420 MPaeE      

Sample Problem
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O ε  

ζ

500

1500

1000

ζ0.2

35CrMnSi steel

45# steel

Q235 steel
Al alloy

brass

0.2%

• Possess distinctive ζY and ζu

• May not have yielding and/or 

localized deformation stage

• Relatively large extension rate 

after fracture (δ ≥ 5%)

• If there is no obvious yielding stage: take the normal stress 

corresponding to 0.2% plastic strain as yield limit (ζp0.2)

Mechanical Behavior of General Ductile Materials under Tension
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• ζ-ε is a slightly curved line and 

approximately obeys the Hooke’s law

• No yielding, hardening and localized 

deformation stage

• The ultimate stress is the only index

• Relatively small percent elongation 

after fracture (δ = 2%-5%)

• Tangential modulus: slope at any point 

of ζ-ε curve

• secant modulus: can be defined at ε = 

0.1%

u



O


intersection

tangent

0.1%

Mechanical Behavior of Brittle Materials under Tension
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O

ε

ζ
compressive

tensile

ζp
ζY

• E, ζp, ζY take the same values as in tensile tests.

• Cannot obtain compressive ultimate stress due to the (constant) 

initial cross-sectional area used in normal stress calculation.

• Compressive mechanical behavior of low-carbon steel is obtained 

from its tensile indices. 

Mechanical Behavior of Low-carbon Steel under Compression
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ζt
u

Tensile

ε
O

ζ

Compressiveζc
u

• There is only very short linear ζ-ε curve (only approximately 

follows Hooke’s law).

• Missing yielding stage (no obvious ζY).

• Much larger compressive ultimate stress (typically 4-5 times that of 

tensile strength limit).

• Final damage is in the form of shearing along a surface 450 from 

axis.

Mechanical Behavior of Cast Iron under Compression
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• Compressive ultimate stress is much larger than its tensile counterpart (5-20 

times)

• Compressive behavior depends on the frictional state at sample ends

• Under frictional end-condition, sample is composed of two trapezoidal 

cones under mirror-symmetry upon damage

• ζ-ε comprises a short straight line, followed by an obvious curve.

• Elastic modulus can be defined by the slope of secant line at ζ = 0.4ζu

• Small compressive ratio after fracture.

Mechanical Behavior of Concrete

Frictional ends Lubricated ends
60
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Transverse 

compression

• Material behavior is transversely 

isotropic.

• Longitudinal tensile strength is 

unstable due to knots.

• Longitudinal compressive 

strength is insensitive to knots.

• Much larger longitudinal 

compressive strength than the 

transverse one.

• Most often used as compressive 

or support bars in engineering

Longitudinal 

Compression

Mechanical Behavior of Wood

Longitudinal tension

Longitudinal compression

Transverse compression
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• Mechanical properties of composite materials is mostly 

determined by the way how fibers are arranged (anisotropic).

Influence from temperature, stress concentration 
(geometric factors), and strain rate (visco-
elasticity)

• High ultimate stress and low plasticity under low temperature.

• Low ultimate stress and low plasticity under high stress 

concentration state

• Low ultimate stress and high plasticity under high strain rate

Mechanical Behavior of Composite Materials
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• ζ = ε· f(t) - linear visco-elasticity

• ζ = f(ε, t) - non-linear visco-elasticity

Mechanical Behavior of Viscoelastic Materials

• Relaxation: decreasing stress with time under constant strain

• Creep: increasing strain with time under constant stress
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• Limit stress (lim): the stress under which mechanical components get damaged.

Strength Condition

 lim
max

n


  

(1) Strength check:

(2) Cross-section design:

(3) Find allowable load:

 max 

max [ ]NA F 

max [ ]NF A

• Damage Criteria: yielding (ζY) for ductile materials; fracture (ζu) for brittle 

materials

• Allowable Stress []: the maximum stress allowed in engineering practice. It is 

typically taken as one nth (Safety Factor) of the limit stress

• Strength Condition:

• Strength Analysis:
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3

N max
max

2 6

2.5 10
Pa 162 MPa<[ ]

π
14 10

4

F

A
 




  

 

，

• Solution

• The strength condition is satisfied.

• Given: d = 14 mm, [ζ] = 170 MPa, uniaxial tension load F = 2.5 kN. 

Check the strength condition of the circular bar.

Sample Problem
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• Solution:

∑Fx = 0, FNBC sin450 - FNAC sin300 = 0

∑Fy = 0, FNBC cos450 - FNAC cos300 - F = 0

Method of joint at C:

We get: FNAC = 0.732F,     FNBC = 0.517F

• Given: AAC = 450 mm2, ABC = 250 mm2, EAC = EBC, [ζ] = 100 MPa. 

Find: the maximum allowable load F of the truss.

C

450300

F

A B

FNBC

FNAC

Sample Problem

1. Find FNAC and FNBC
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2. Allowable axial force in bar AC and BC 

so: [F] ≤ 61.48 kN

So:  [F] ≤ 48.36 kN

  6 2 6

N 0.732 450 10 100 10ACF F A       m Pa

  6 2 6

N 0.517 250 10 100 10BCF F A       m Pa

Take the smaller value: [F] ≤ 48.36 kN. 

3. Allowable load [F] 
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B
A

C

F

45°

45°

• Given: F = 75 kN, [ζ] = 160 MPa. Find: the minimum AAB and ABC.

• Solution:

1. Find FNAB and FNBC

∑Fx = 0, FNBC cos450 + FNAC = 0

∑Fy = 0, FNBC cos450 + F = 0

By the Method of joint at B:

We get: FNAC = F，FNBC = -1.414F

Sample Problem
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3
4 2 2N

6

3
N 4 2 2

6

75 10
4.687 10 m 4.687 cm

[ ] 160 10

106 10
6.629 10 m 6.629 cm

[ ] 160 10

AB
AB

BC

BC

F
A

F
A










    




    



2. Minimum cross-sectional area 



Brittle Ductile

• Under uniaxial tension, brittle bars break along cross-

sections while ductile ones glide along 450 sections 

during yielding?

Failure of Brittle vs. Ductile Bars under Tension
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• Stress concentration: rapid stress increase at specific locations 

where geometric defects and/or abrupt cross-sectional area change 

occurs

Stress Concentration
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• Stress-concentration factor for flat bars with circular holes
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• Stress-concentration factor for flat bars with shoulder 

fillets. The dashed line is for a full quarter-circular fillet.
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• Stress-concentration factor for round bars with shoulder 

fillets. The dashed line is for a full quarter-circular fillet.



Sample Problem

Determine the largest axial load P

that can be safely supported by a flat 

steel bar consisting of two portions, 

both 10 mm thick, and respectively c

= 40 and b = 60 mm wide, connected 

by fillets of radius R = 8 mm.  

Assume an allowable normal stress of 

165 MPa.

SOLUTION:

• Determine the geometric ratios and the 

stress concentration factor.

• Apply the definition of normal stress to 

find the allowable load.

• Find the allowable average normal 

stress using the material allowable 

normal stress and the stress 

concentration factor.
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• Determine the geometric ratios and the stress concentration factor.

60mm 8mm
1.50 0.20

40mm 40mm

b R

c c
    1.82K 
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• Determine the geometric ratios and the stress concentration factor.

60mm 8mm
1.50 0.20

40mm 40mm

b R

c c
   

• Find the allowable average normal stress using the material 

allowable normal stress and the stress concentration factor.

MPa7.90
82.1

MPa165max
ave 

K




• Apply the definition of normal stress to find the allowable load.

    340mm 10mm 90.7MPa 36.3 10 NaveP A   

1.82K 
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• Introduction（拉压变形简介）

• Diagram of Axial Forces（轴力图）

• Concept of Stresses（应力的概念）

• General Stress State of a Point（点的一般应力状态）

• Stresses Acting on Cross Sections（拉压杆横截面上的应力）

• Saint-Venant’s Principle（圣维南原理）

• Stresses Acting on Oblique Sections（拉压杆斜截面上的应力）

• Deformation of Axially Loaded Bars（拉压杆的变形）

• Elastic Constants of Engineering Materials（常见工程材料的弹性常数）

• Nonuniform Tension/compression（非均匀拉压）

• Strain Energy（应变能）

• Strain Energy Density（应变能密度）

• Mechanical Behavior of Materials（材料的力学性能）

• Nominal Stress-strain Curve（名义应力应变曲线）

• Stress and Deformation Indices of Low-carbon Steel（低碳钢的应力和变形指标）

Contents
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• Yield Stress, Ultimate Stress and Percent Elongation of Engineering Materials

（常见工程材料的屈服应力、强度极限和断后伸长率）

• Strain (Work) Hardening（冷作硬化）

• Mechanical Behavior of General Ductile Materials under Tension（塑性材料的

拉伸力学性能）

• Mechanical Behavior of Brittle Materials under Tension（脆性材料的拉伸）

• Mechanical Behavior of Low-carbon Steel under Compression（低碳钢的压缩）

• Mechanical Behavior of Cast Iron under Compression（铸铁的压缩力学性能）

• Mechanical Behavior of Creet（混凝土的力学性能）

• Mechanical Behavior of Wood（木材的力学性能）

• Mechanical Behavior of Composite Materials（复合材料的力学性能）

• Mechanical Behavior of Viscoelastic Materials（粘弹性材料的力学性能）

• Strength Condition（强度条件）

• Failure of Brittle vs. Ductile Bars under Tension（脆性和塑性杆件的拉伸失效）

• Stress Concentration（拉压杆中的应力集中现象）

Contents
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