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Introduction

» Linear elastic first; Plastic (permanent deformation); Unloading
follows linear curve; Relaxation; Creep; Bauschinger effect; Cyclic
hardening/softening; Rate, loading history and temperature
dependent Hold at

constant stress
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Introduction

« In 1930’s, Taylor and scientists experimentally measured the response of thin-
walled tubes under combined torsion, axial loading, and hydrostatic pressure.

 Hydrostatic stress has no effects on plastic deformation.

* Plastic behavior doesn’t induce volume change of a material.

» Plastic deformation is caused by shearing of atomic planes via propagation of a
type of lattice defects called dislocations.

 During plastic loading, the principal components of the plastic strain rate tensor
are parallel to the components of stress acting on the solid.

» Levy—Mises flow rule relates the principal plastic strain increment to the
principal stresses.
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Introduction

» Decomposition of strain, yield criteria, strain hardening
rules, plastic flow rule, elastic unloading criterion

* We restrict attention to small deformations (<10%).
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1D Plasticity

» Decomposition of strain: de=d&® +de”,
» Yield criterion: o =0, | &" |

e Strain hardening rules govern the

do=Ed&®
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functional dependence of yield stress
on plastic strain.
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1D Plasticity

v Elastic-perfectly plastic model
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1D Plasticity
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v'Power law hardening model . >
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 Here oy, E, and N can be treated as fitting parameters to
experimental data. 0<N<1 is called the hardening index.

 Tangent modulus of the stress-plastic strain curve
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1D Plasticity

 Law of plastic flow:

d5:d56+d5p=dEO-+th, oc=0,,doc>0
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Rough Values of Yield Stress

Material Yield Stress 0y / MNm™ Material Yield Stress g, / MNm™
Tungsten carbide 6000 Mild steel 220
Silicon carbide 10 000 Copper 60
Tungsten 2000 Titanium 180-1320
Alumina 5000 Silica glass 7200
Titanium carbide 4000 Aluminum and alloys 40-200
Silicon nitride 8000 Polyimides 52-90
Nickel 70 Nylon 49-87
Iron 50 PMMA 60-110
Low alloy steels 500-1980 Polycarbonate 55
Stainless steel 286-500 PVC 45-48
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3D Plasticity Theory

« Decomposition of strain: dg; =ds; +dsf, do; =C,,dsg
« von Mises yield criterion: take the distortional part of

elastic strain energy as a criterion for the onset of plastic

deformation
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 von Mises yield function:
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Yield Criterion

e Tresca yield criterion:

0,20 20 . = — 0, —0_ =0y
» Tresca yield function:
f(G”,E ) max{|a, —oy|.low —oul.lo —0”||}—GY [5“’]:0.

- Given the current stress o;; applied to the material, we need to
determine current yield stress o, based on an effective plastic strain:

dz \/3dgpdg”, g°=[dz? j\/ dede)

1D (o, =0,,0, =0, =0):d&" = \/3 (defdef, +defdel, +dehdel)

:\/%(dgﬁdgﬁ+2(—%d5ﬁj(—%d£ﬂj) = Jdefdef, =dgf
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Yield Surface

« Geometric representation of von Mises
yield condition in stress space.

* If the state of stress falls within the
cylinder, the material is below yield and
responds elastically.

« If the state of stress lies on the surface of
the cylinder, the material yields and
deforms plastically.

e The stress state cannot lie outside the
cylinder; this would lead to an infinite
plastic strain.
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Isotropic Strain Hardening

» Plastic deformation typically causes the metal to strain
harden, as obviously seen in 1D.

e Strain hardening can be modeled by relating the size and
shape of the yield surface to plastic strain in some
appropriate way.

* The easiest way to model strain hardening Is to make the
yield surface increase In size but remain the same shape.

 Determine the updated radius via the
effective plastic strain, 1D hardening ' -
functions, and new yield stress. ‘

de?® =\/§dg-'-°d5f’, g’ =jd5p =I\/§d8ifd8if, o =0, [Sp]
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Kinematic Strain Hardening

A AG

 An isotropic hardening law does not
account for the Bauschinger effect.

« Kinematic hardening drag the yield > >
surface in the direction of increasing LJ /
stress as you deform the material in Kinematic hardening Isotropic hardening
tension.

 This softens the material in compression,
however.

* S0, this law can model cyclic plastic
deformation.

f(0,.) = \/g(a; ey [ ])(o" ~ay [ ]) -0 =0

: : : : 2
» Linear kinematic hardening law: dg; =§cdg..p
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Principal of Maximum Plastic Resistance

j —
» The von Mises yield surface Is convex: dsf =d&” of /do;

 The plastic strain increment is normal to the yield surface
for plastically stable solids.
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LLaw of Plastic Flow for Isotropic Hardening

« Experimental results (Levy-Mises theory) suggest that
plastic strains can be derived from the yield criterion.

 Law of plastic flow for isotropic hardening:
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LLaw of Plastic Flow for Kinematic Hardening

» Law of plastic flow for kinematic hardening:

dE-PEdEpi:(dEp) §M _ 3 (G;I _ak')do_ E(G: _aii)
ij 80'”. 2 Oy, 20 Oy, kI 2 o -
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Elastic Unloading Conditions

 Both plastic flow laws are consistent with the Levy-Mises
theory, which is based on experimental observations.

de” —dg dg, —dg), deg —dgf

O, —0y O — Oy, Oy — O,
» Elastic unloading conditions 403

o;do; <0, (O'i’j - q; )daij <0.

 In both cases, the solid deforms
elastically (no plastic strain) if the
condition Is satisfied.

0,
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Summary of 3D Plasticity Theory

« Summary of isotropically hardening elastic-plastic model
» Given: E,v,o, | ° |,h=do, /dz’

AY h
de; :dgi? +d5ij'.O
Levy v s L1
€ -

de; —?dau -—do, 0, =—<do; +—7,do,
0, o, -0, _Ep]<0 » e’
de =5 _
ij §£<ledakl>§GIJ | o, -0, Ep}:O o I'x x =0
2h o, 2 o, - where (x) = 1 0 x<0

* It will correctly predict the conditions necessary to initiate
yield under multiaxial loading.

* It will correctly predict the plastic strain rate under an
arbitrary multiaxial stress state.

» |t can model accurately any uniaxial stress-strain curve.
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Summary of 3D Plasticity Theory

« Summary of linear kinematically hardening model
* GIVen: E,v,o,,,C

- p
dgij = dgij +d8ij
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* This constitutive equation is used primarily to model
cyclic plastic deformation or plastic flow under
nonproportional loading (in which principal axes of stress

rotate significantly during plastic flow).
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