Metal Plasticity

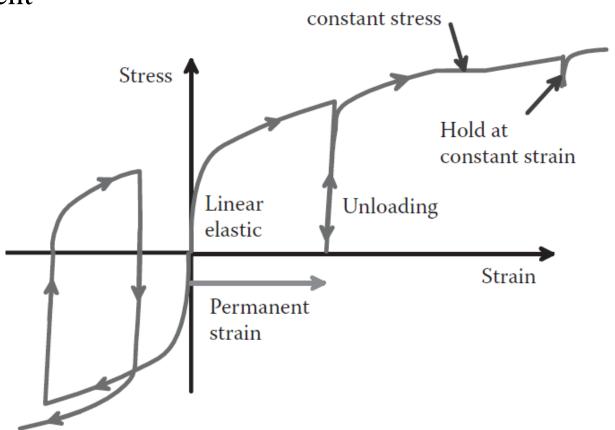
mi@sev.edv.cn

Outline

- Introduction (引言)
- 1D plasticity theory (一维塑性)
- Rough values of yield stress (常用工程材料屈服应力值)
- 3D plasticity theory (三维塑性理论)
- Decomposition of strain (应变分解)
- Yield criterion (屈服判据)
- Yield surface (屈服面)
- Isotropic strain hardening(各向同性强化)
- Kinematic strain hardening (运动强化)
- Principal of maximum plastic resistance (最大塑阻原理)
- Law of plastic flow (塑性流动定律)
- Elastic unloading conditions (弹性卸载的条件)

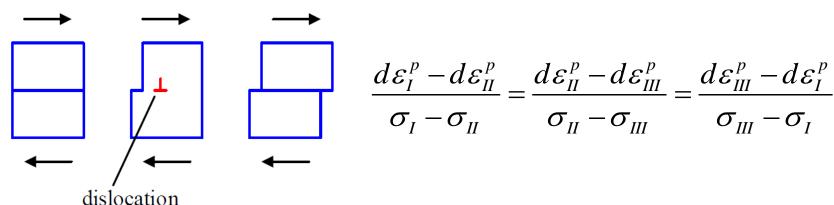
Introduction

Linear elastic first; Plastic (permanent deformation); Unloading follows linear curve; Relaxation; Creep; Bauschinger effect; Cyclic hardening/softening; Rate, loading history and temperature dependent



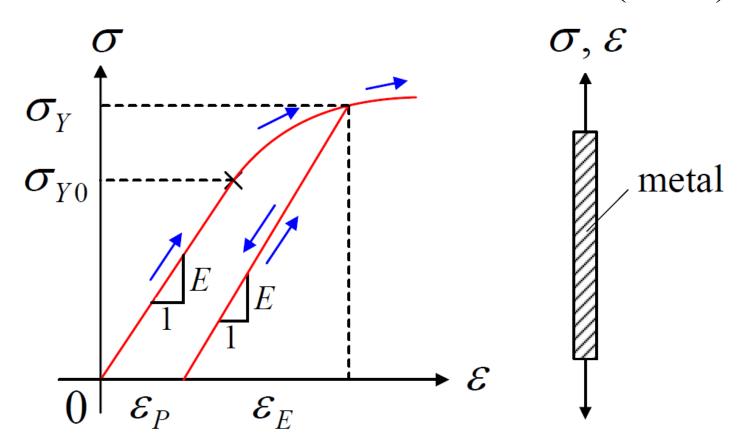
Introduction

- In 1930's, Taylor and scientists experimentally measured the response of thin-walled tubes under combined torsion, axial loading, and hydrostatic pressure.
- Hydrostatic stress has no effects on plastic deformation.
- Plastic behavior doesn't induce volume change of a material.
- Plastic deformation is caused by shearing of atomic planes via propagation of a type of lattice defects called dislocations.
- During plastic loading, the principal components of the plastic strain rate tensor are parallel to the components of stress acting on the solid.
- Levy–Mises flow rule relates the principal plastic strain increment to the principal stresses.

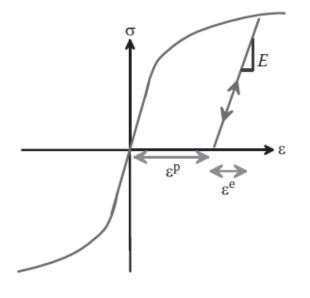


Introduction

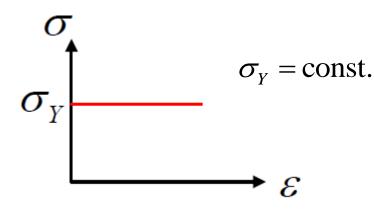
- Decomposition of strain, yield criteria, strain hardening rules, plastic flow rule, elastic unloading criterion
- We restrict attention to small deformations ($\leq 10\%$).

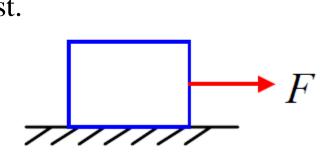


- **Decomposition of strain:** $d\varepsilon = d\varepsilon^e + d\varepsilon^p$, $d\sigma = Ed\varepsilon^e$
- Yield criterion: $\sigma = \sigma_Y \left[\varepsilon^p \right]$
- Strain hardening rules govern the functional dependence of yield stress on plastic strain.

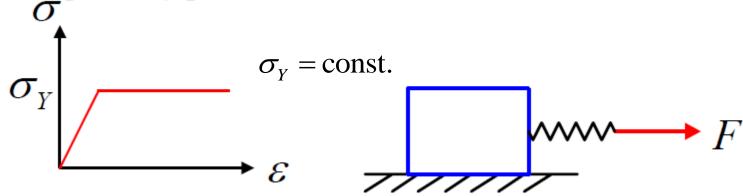


✓ Rigid-perfectly plastic model

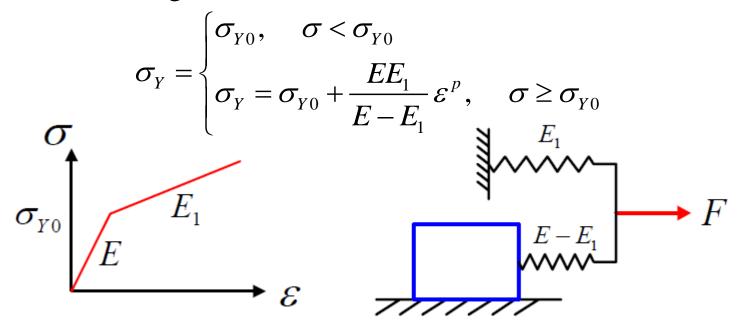




✓ Elastic-perfectly plastic model

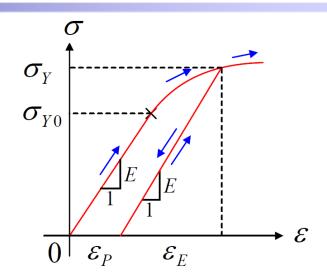


✓ Linear hardening model



✓ Power law hardening model

$$\sigma_{Y} = \begin{cases} \sigma_{Y0}, & \sigma < \sigma_{Y0} \\ \sigma_{Y0} \left(1 + \frac{E\varepsilon^{p}}{\sigma_{Y0}} \right)^{N}, & \sigma \geq \sigma_{Y0} \end{cases}$$



- Here σ_{Y0} , E, and N can be treated as fitting parameters to experimental data. $0 \le N < 1$ is called the hardening index.
- Tangent modulus of the stress-plastic strain curve

$$h = \frac{d\sigma}{d\varepsilon_P} = EN \left(1 + \frac{E\varepsilon_P}{\sigma_{Y0}} \right)^{N-1}$$

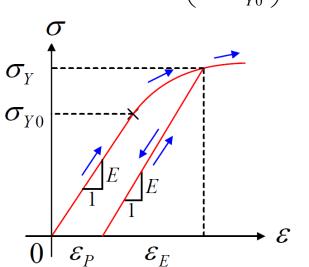
Law of plastic flow:

$$d\varepsilon = d\varepsilon^{e} + d\varepsilon^{p} = \frac{d\sigma}{E} + \frac{d\sigma}{h}, \quad \sigma = \sigma_{Y}, d\sigma > 0$$

$$\sigma_{Y0} \qquad \qquad \varepsilon_{P} \qquad$$

• Elastic unloading condition:

$$\sigma d\sigma < 0$$



Rough Values of Yield Stress

Material	Yield Stress $\sigma_{\scriptscriptstyle Y}$ / MNm ⁻²	Material	Yield Stress $\sigma_{\scriptscriptstyle Y}$ / MNm ⁻²
Tungsten carbide	6000	Mild steel	220
Silicon carbide	10 000	Copper	60
Tungsten	2000	Titanium	180-1320
Alumina	5000	Silica glass	7200
Titanium carbide	4000	Aluminum and alloys	40-200
Silicon nitride	8000	Polyimides	52-90
Nickel	70	Nylon	49-87
Iron	50	PMMA	60-110
Low alloy steels	500-1980	Polycarbonate	55
Stainless steel	286-500	PVC	45-48

3D Plasticity Theory

- Decomposition of strain: $d\varepsilon_{ij} = d\varepsilon_{ij}^e + d\varepsilon_{ij}^p$, $d\sigma_{ij} = C_{ijkl}d\varepsilon_{kl}^e$
- von Mises yield criterion: take the distortional part of elastic strain energy as a criterion for the onset of plastic deformation

$$3J_{2} = \frac{3}{2}\sigma'_{ij}\sigma'_{ij} = \frac{3}{2}\left(\sigma'^{2}_{I} + \sigma'^{2}_{II} + \sigma'^{2}_{III}\right) = \frac{3}{2}\left\{\sigma_{I} - \frac{1}{3}\left(\sigma_{I} + \sigma_{II} + \sigma_{III}\right)\right\}^{2} + \dots + \dots$$

$$= \frac{1}{2}\left\{\left(\sigma_{I} - \sigma_{II}\right)^{2} + \left(\sigma_{II} - \sigma_{III}\right)^{2} + \left(\sigma_{III} - \sigma_{I}\right)^{2}\right\}$$

$$1D(\sigma_I = \sigma_Y, \sigma_{II} = \sigma_{III} = 0): \quad \frac{3}{2}\sigma'_{ij}\sigma'_{ij} = \sigma_Y^2 \quad \Rightarrow \sigma_e = \sqrt{\frac{3}{2}\sigma'_{ij}\sigma'_{ij}} = \sigma_Y$$

$$\left| \tau_8 = \frac{1}{3} \sqrt{\left(\sigma_I - \sigma_{II}\right)^2 + \left(\sigma_{II} - \sigma_{III}\right)^2 + \left(\sigma_{III} - \sigma_I\right)^2} = \frac{\sqrt{2}}{3} \sigma_e = \frac{1}{\sqrt{3}} \sigma'_{ij} \sigma'_{ij} = \frac{2}{\sqrt{3}} J_2 \right|$$

• von Mises yield function:

$$f\left(\sigma_{ij}, \overline{\varepsilon}^{p}\right) = \sqrt{\frac{1}{2}}\left\{\left(\sigma_{I} - \sigma_{II}\right)^{2} + \left(\sigma_{II} - \sigma_{III}\right)^{2} + \left(\sigma_{III} - \sigma_{I}\right)^{2}\right\} - \sigma_{Y}\left[\overline{\varepsilon}^{p}\right] = \sqrt{\frac{3}{2}}\sigma'_{ij}\sigma'_{ij} - \sigma_{Y}\left[\overline{\varepsilon}^{p}\right] = 0.$$

Yield Criterion

Tresca yield criterion:

$$\sigma_1 \geq \sigma_2 \geq \sigma_3$$
: $\frac{\sigma_1 - \sigma_3}{2} = \frac{\sigma_Y}{2} \Rightarrow \sigma_1 - \sigma_3 = \sigma_Y$

• Tresca yield function:

$$f\left(\sigma_{ij}, \overline{\varepsilon}^{p}\right) = \max\left\{\left|\sigma_{I} - \sigma_{II}\right|, \left|\sigma_{II} - \sigma_{III}\right|, \left|\sigma_{I} - \sigma_{III}\right|\right\} - \sigma_{Y}\left[\overline{\varepsilon}^{p}\right] = 0.$$

• Given the current stress σ_{ij} applied to the material, we need to determine current yield stress σ_Y based on an **effective plastic strain**:

$$d\overline{\varepsilon}^{p} = \sqrt{\frac{2}{3}d\varepsilon_{ij}^{p}d\varepsilon_{ij}^{p}}, \quad \overline{\varepsilon}^{p} = \int d\overline{\varepsilon}^{p} = \int \sqrt{\frac{2}{3}d\varepsilon_{ij}^{p}d\varepsilon_{ij}^{p}}$$

$$1D(\sigma_{I} = \sigma_{Y}, \sigma_{II} = \sigma_{III} = 0): d\overline{\varepsilon}^{p} = \sqrt{\frac{2}{3}} (d\varepsilon_{11}^{p} d\varepsilon_{11}^{p} + d\varepsilon_{22}^{p} d\varepsilon_{22}^{p} + d\varepsilon_{33}^{p} d\varepsilon_{33}^{p})$$

$$= \sqrt{\frac{2}{3}} \left(d\varepsilon_{11}^p d\varepsilon_{11}^p + 2 \left(-\frac{1}{2} d\varepsilon_{11}^p \right) \left(-\frac{1}{2} d\varepsilon_{11}^p \right) \right) = \sqrt{d\varepsilon_{11}^p d\varepsilon_{11}^p} = d\varepsilon_{11}^p$$

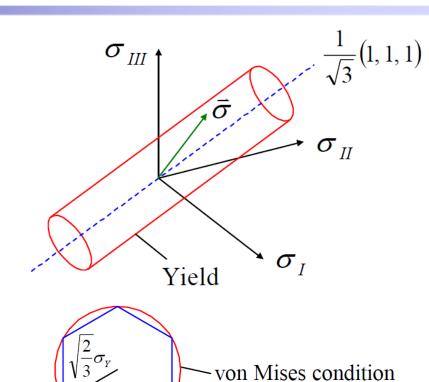
Yield Surface

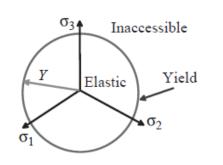
- Geometric representation of von Mises yield condition in stress space.
- If the state of stress falls within the cylinder, the material is below yield and responds elastically.
- If the state of stress lies on the surface of the cylinder, the material yields and deforms plastically.
- The stress state cannot lie outside the cylinder; this would lead to an infinite plastic strain.

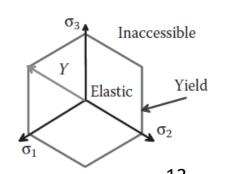
i.e.:
$$\sigma_{I} = \frac{R}{\sqrt{2}}, \sigma_{II} = -\frac{R}{\sqrt{2}}, \sigma_{III} = 0$$

$$\sigma_{e} = \sqrt{\frac{1}{2} \left\{ \left(\sigma_{I} - \sigma_{II} \right)^{2} + \left(\sigma_{II} - \sigma_{III} \right)^{2} + \left(\sigma_{III} - \sigma_{I} \right)^{2} \right\}}$$

$$= R\sqrt{\frac{1}{2} \left\{ 2 + \frac{1}{2} + \frac{1}{2} \right\}} = \sqrt{\frac{3}{2}} R = \sigma_{Y} \Rightarrow R = \sqrt{\frac{2}{3}} \sigma_{Y}$$







Tresca condition

Isotropic Strain Hardening

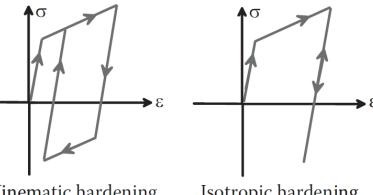
- Plastic deformation typically causes the metal to strain harden, as obviously seen in 1D.
- Strain hardening can be modeled by relating the size and shape of the yield surface to plastic strain in some appropriate way.
- The easiest way to model strain hardening is to make the yield surface increase in size but remain the same shape.
- Determine the updated radius via the effective plastic strain, 1D hardening functions, and new yield stress.

$$d\overline{\varepsilon}^{p} = \sqrt{\frac{2}{3}d\varepsilon_{ij}^{p}d\varepsilon_{ij}^{p}}, \ \overline{\varepsilon}^{p} = \int d\overline{\varepsilon}^{p} = \int \sqrt{\frac{2}{3}d\varepsilon_{ij}^{p}d\varepsilon_{ij}^{p}}, \ \sigma = \sigma_{Y} \Big[\varepsilon^{p}\Big]$$

 $d\sigma_{ij}$

Kinematic Strain Hardening

- An **isotropic hardening** law does not account for the Bauschinger effect.
- **Kinematic hardening** drag the yield surface in the direction of increasing stress as you deform the material in tension.



Kinematic hardening Isotropic hardening

- This softens the material in compression, however.
- So, this law can model cyclic plastic deformation.

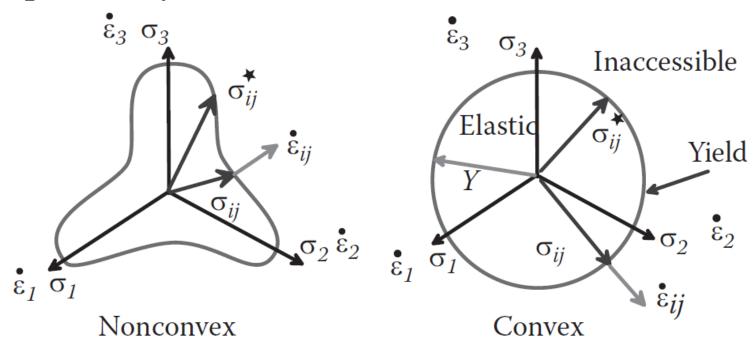
$$f\left(\sigma_{ij}, \overline{\varepsilon}^{p}\right) = \sqrt{\frac{3}{2}\left(\sigma'_{ij} - \alpha_{ij}\left[\varepsilon_{ij}^{p}\right]\right)\left(\sigma'_{ij} - \alpha_{ij}\left[\varepsilon_{ij}^{p}\right]\right)} - \sigma_{Y0} = 0.$$

• Linear kinematic hardening law: $d\alpha_{ij} = \frac{2}{2}cd\varepsilon_{ij}^{p}$

Principal of Maximum Plastic Resistance

$$\left(\sigma_{ij}-\sigma_{ij}^*\right)d\varepsilon_{ij}^p\geq 0$$

- The von Mises yield surface is convex: $d\varepsilon_{ij}^p \equiv d\bar{\varepsilon}^p \partial f/\partial \sigma_{ij}$
- The plastic strain increment is normal to the yield surface for plastically stable solids.



Law of Plastic Flow for Isotropic Hardening

- Experimental results (Levy-Mises theory) suggest that plastic strains can be derived from the yield criterion.
- Law of plastic flow for isotropic hardening:

$$d\varepsilon_{ij}^{p} \equiv d\overline{\varepsilon}^{p} \frac{\partial f}{\partial \sigma_{ij}} = \left(d\overline{\varepsilon}^{p}\right) \left(\frac{3}{2} \frac{\sigma'_{ij}}{\sigma_{Y}}\right) = \left(\frac{3}{2} \frac{1}{h} \frac{\sigma'_{kl}}{\sigma_{Y}} d\sigma_{kl}\right) \left(\frac{3}{2} \frac{\sigma'_{ij}}{\sigma_{Y}}\right)$$

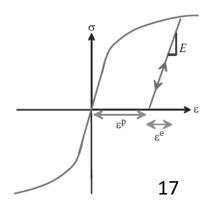
• Some intermediate results

$$f\left[\sigma_{ij}, \overline{\varepsilon}^{p}\right] = \sqrt{\frac{3}{2}}\sigma'_{ij}\sigma'_{ij} - \sigma_{Y}\left[\overline{\varepsilon}^{p}\right] = 0 \quad \Rightarrow 0 = f\left[\sigma_{ij} + d\sigma_{ij}, \overline{\varepsilon}^{p} + d\overline{\varepsilon}^{p}\right] \approx f\left[\sigma_{ij}, \overline{\varepsilon}^{p}\right] + \frac{\partial f}{\partial \sigma_{ij}} d\sigma_{ij} + \frac{\partial f}{\partial \overline{\varepsilon}^{p}} d\overline{\varepsilon}^{p}$$

$$= \frac{\partial f}{\partial \sigma_{ij}} d\sigma_{ij} - \frac{\partial \sigma_{Y}}{\partial \overline{\varepsilon}^{p}} d\overline{\varepsilon}^{p} = \frac{\partial f}{\partial \sigma_{ij}} d\sigma_{ij} - h d\overline{\varepsilon}^{p} \quad \Rightarrow d\overline{\varepsilon}^{p} = \frac{1}{h} \frac{\partial f}{\partial \sigma_{ij}} d\sigma_{ij} = \frac{1}{h} \frac{3}{2} \frac{\sigma'_{ij}}{\sigma_{Y}} d\sigma_{ij}$$

$$\frac{\partial f}{\partial \sigma_{ij}} = \frac{1}{2} \frac{1}{\sqrt{\frac{3}{2}} \sigma'_{M} \sigma'_{M}} \frac{3}{2} 2 \frac{\partial \sigma'_{pq}}{\partial \sigma_{ij}} \sigma'_{pq} = \frac{3}{2} \frac{1}{\sigma_{Y}} \left(\delta_{ip} \delta_{jq} - \frac{1}{3} \delta_{ij} \delta_{pq}\right) \sigma'_{pq} = \frac{3}{2} \frac{\sigma'_{ij}}{\sigma_{Y}}$$

$$\frac{\partial \sigma'_{pq}}{\partial \sigma_{ij}} = \frac{\partial}{\partial \sigma_{ij}} \left(\sigma_{pq} - \frac{1}{3} \sigma_{M} \delta_{pq}\right) = \delta_{ip} \delta_{jq} - \frac{1}{3} \delta_{ik} \delta_{jk} \delta_{pq} = \delta_{ip} \delta_{jq} - \frac{1}{3} \delta_{ij} \delta_{pq}$$



Law of Plastic Flow for Kinematic Hardening

• Law of plastic flow for kinematic hardening:

$$d\varepsilon_{ij}^{p} \equiv d\overline{\varepsilon}^{p} \frac{\partial f}{\partial \sigma_{ij}} = \left(d\overline{\varepsilon}^{p}\right) \left(\frac{3}{2} \frac{\left(\sigma_{ij}' - \alpha_{ij}\right)}{\sigma_{Y0}}\right) = \left(\frac{3}{2c} \frac{\left(\sigma_{kl}' - \alpha_{kl}\right)}{\sigma_{Y0}} d\sigma_{kl}\right) \left(\frac{3}{2} \frac{\left(\sigma_{ij}' - \alpha_{ij}\right)}{\sigma_{Y0}}\right)$$

Some intermediate results

$$f\left[\sigma_{ij},\alpha_{ij}\right] = \sqrt{\frac{3}{2}\left(\sigma'_{ij}-\alpha_{ij}\right)\left(\sigma'_{ij}-\alpha_{ij}\right)} - \sigma_{Y0} = 0 \implies 0 = f\left[\sigma_{ij}+d\sigma_{ij},\alpha_{ij}+d\alpha_{ij}\right] \approx f\left[\sigma_{ij},\alpha_{ij}\right] + \frac{\partial f}{\partial \sigma_{ij}}d\sigma_{ij} + \frac{\partial f}{\partial \alpha_{ij}}d\alpha_{ij}$$

$$= \left(\frac{3}{2}\frac{\left(\sigma'_{ij}-\alpha_{ij}\right)}{\sigma_{Y0}}\right)d\sigma_{ij} + \left(-\frac{3}{2}\frac{\left(\sigma'_{ij}-\alpha_{ij}\right)}{\sigma_{Y0}}\right)\left(cd\overline{\varepsilon}^{p}\frac{\left(\sigma'_{ij}-\alpha_{ij}\right)}{\sigma_{Y0}}\right) = \frac{3}{2}\frac{\left(\sigma'_{ij}-\alpha_{ij}\right)}{\sigma_{Y0}}d\sigma_{ij} - \frac{3}{2}\frac{\left(\sigma'_{ij}-\alpha_{ij}\right)\left(\sigma'_{ij}-\alpha_{ij}\right)}{\sigma_{Y0}^{2}}\left(cd\overline{\varepsilon}^{p}\right)$$

$$\Rightarrow \overline{d\overline{\varepsilon}^{p}} = \frac{3}{2c}\frac{\left(\sigma'_{ij}-\alpha_{ij}\right)}{\sigma_{Y0}}d\sigma_{ij}, \qquad d\alpha_{ij} = \frac{2}{3}cd\varepsilon_{ij}^{p} = \frac{2}{3}c\left(d\overline{\varepsilon}^{p}\frac{3}{2}\frac{\left(\sigma'_{ij}-\alpha_{ij}\right)}{\sigma_{Y0}}\right) = cd\overline{\varepsilon}^{p}\frac{\left(\sigma'_{ij}-\alpha_{ij}\right)}{\sigma_{Y0}};$$

$$\frac{\partial f}{\partial \sigma_{ij}} = \left(d\overline{\varepsilon}^{p}\right)\left(\frac{3}{2}\frac{\left(\sigma'_{ij}-\alpha_{ij}\right)}{\sigma_{Y0}}\right); \quad \frac{\partial f}{\partial \alpha_{ij}} = \frac{1}{2}\frac{1}{\sqrt{\frac{3}{2}\left(\sigma'_{kl}-\alpha_{kl}\right)\left(\sigma'_{kl}-\alpha_{kl}\right)\left(\sigma'_{kl}-\alpha_{kl}\right)}}\frac{3}{2}2\left(-\delta_{ip}\delta_{jq}\right)\left(\sigma'_{pq}-\alpha_{pq}\right) = -\frac{3}{2}\frac{\left(\sigma'_{ij}-\alpha_{ij}\right)}{\sigma_{Y0}}.$$

Elastic Unloading Conditions

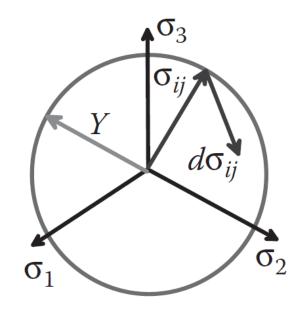
• Both plastic flow laws are consistent with the Levy-Mises theory, which is based on experimental observations.

$$\frac{d\varepsilon_{I}^{p} - d\varepsilon_{II}^{p}}{\sigma_{I} - \sigma_{II}} = \frac{d\varepsilon_{II}^{p} - d\varepsilon_{III}^{p}}{\sigma_{II} - \sigma_{III}} = \frac{d\varepsilon_{III}^{p} - d\varepsilon_{I}^{p}}{\sigma_{III} - \sigma_{II}}$$

Elastic unloading conditions

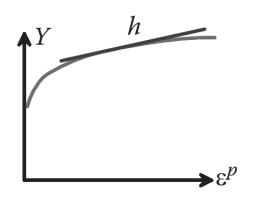
$$\sigma'_{ij}d\sigma_{ij}<0, \qquad \left(\sigma'_{ij}-\alpha_{ij}\right)d\sigma_{ij}<0.$$

• In both cases, the solid deforms elastically (no plastic strain) if the condition is satisfied.



Summary of 3D Plasticity Theory

- Summary of isotropically hardening elastic-plastic model
- Given: $E, v, \sigma_{Y} \left[\overline{\varepsilon}^{p} \right], h = d\sigma_{Y} / d\overline{\varepsilon}^{p}$ $d\varepsilon_{ij} = d\varepsilon_{ij}^{e} + d\varepsilon_{ij}^{p}$ $d\varepsilon_{ij}^{e} = \frac{1+v}{E} d\sigma_{ij} \frac{v}{E} d\sigma_{kk} \delta_{ij} = \frac{1}{2G} d\sigma'_{ij} + \frac{1}{9K} \delta_{ij} d\sigma_{kk}$ $\sigma_{e} \sigma_{Y} \left[\overline{\varepsilon}^{p} \right] < 0$ $d\varepsilon_{ij}^{p} = \begin{cases} 0, & \sigma_{e} \sigma_{Y} \left[\overline{\varepsilon}^{p} \right] < 0 \\ \frac{3}{2} \frac{1}{h} \frac{\langle \sigma'_{kl} d\sigma_{kl} \rangle}{\sigma_{V}} \frac{3}{2} \frac{\sigma'_{ij}}{\sigma_{V}}, & \sigma_{e} \sigma_{Y} \left[\overline{\varepsilon}^{p} \right] = 0 \end{cases}$



where
$$\langle x \rangle = \begin{cases} x & x \ge 0 \\ 0 & x \le 0 \end{cases}$$

- It will correctly predict the conditions necessary to initiate yield under multiaxial loading.
- It will correctly predict the plastic strain rate under an arbitrary multiaxial stress state.
- It can model accurately any uniaxial stress-strain curve.

20

Summary of 3D Plasticity Theory

- Summary of linear kinematically hardening model
- Given: $E, \nu, \sigma_{\nu_0}, c$

$$d\varepsilon_{ij} = d\varepsilon_{ij}^{e} + d\varepsilon_{ij}^{p}$$

$$d\varepsilon_{ij}^{e} = \frac{1+\nu}{E} d\sigma_{ij} - \frac{\nu}{E} d\sigma_{kk} \delta_{ij} = \frac{1}{2G} d\sigma'_{ij} + \frac{1}{9K} \delta_{ij} d\sigma_{kk}$$

$$\int_{0}^{3} \left(\sigma'_{ij} - \alpha_{ij}\right) \left(\sigma'_{ij} - \alpha_{ij}\right) - \sigma_{Y0} < 0$$

$$d\varepsilon_{ij}^{p} = \begin{cases} 0, & \sqrt{\frac{3}{2} \left(\sigma'_{ij} - \alpha_{ij}\right)} \left(\sigma'_{ij} - \alpha_{ij}\right) - \sigma_{Y0} < 0 \end{cases}$$

$$d\varepsilon_{ij}^{p} = \begin{cases} 0, & \sqrt{\frac{3}{2} \left(\sigma'_{ij} - \alpha_{ij}\right)} \left(\sigma'_{ij} - \alpha_{ij}\right) - \sigma_{Y0} < 0 \end{cases}$$

• This constitutive equation is used primarily to model cyclic plastic deformation or plastic flow under nonproportional loading (in which principal axes of stress rotate significantly during plastic flow).