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Pure Bending vs. Nonuniform Bending

N
 Pure bending (CD) ﬁi[i C B :%78
F; =0, M =const PI_M | |+a>|P
F|
« Nonuniform bending (AC & DB) P
F.#0, M+#0




Deformation Characteristics

]y:

« Before:
M
7\\ _(r/r
. After: ( — \jL\‘VI\ —
\L —

o Straight longitudinal lines turns into curves.

 Longitudinal lines get shortened under compression and lengthened

under tension.

 Cross-section lines remain straight and perpendicular to longitudinal

curves.
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Assumptions for Pure Bending

 Plane assumption: under pure bending, cross-
sections of beams remain planar and
perpendicular to beam axis and only rotate a small
angle.

» Assumption of uniaxial stress state: individual
longitudinal layers are under uniaxial
tension/compression along beam axis, without
stresses acting in between.



Neutral Surface & Neutral Axes

V4

Neutral Axis

o[ i |

’/ ‘ Neuztral Axis
. After: ///‘BI‘IM@

— —

 Neutral Surface the longitudinal layer under neither tension nor
compression.

« Neutral Axes: intersecting lines of the neutral surface & cross
sections.



Kinematics

Neutral
axis

AR
| 4P

y
v _(p+y)do—pdo
12 2
Neutral yo,
Surface
AN * The y-coordinate Is

measured from the proposed
neutral axis.
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Hooke’s Law

o(y)=Es(y)=E~ \

P Neutral surface

« Normal stress acting on a longitudinal layer is linearly proportional
to its distance from the neutral surface, positive for layers under
tension / negative for layers under compression.

« Remark: the above equation can only be used for qualitative analysis
of stresses in bending beams since it is difficult to measure the
curvature of radius (p) of individual longitudinal layers.



Static Equivalency
E

0=F, —_[ odA = I —ydA_—Ay
Yo,
 Neutral axis passes through the centroid: y = 0.

. for an arbitrarily defined y-coordinate:

V=2 A% /A

\./z d

z}( dA
\

0=M, Iz odA_—I yzdA ]

M, =] y-ocdA= j—yZdA_%l — ;z::'lz .

:>G=Ey — Gzsz Y
P l /

El : flexural rigidity
|, = jA y“dA : second moment of cross-section w.r.t. z.

'y
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Pure Bending Normal Stress Formula

« Normal stress on cross-sections: oo = M ] y / | S

e Maximum normal stress on cross-sections:

Gmax:Mz ymax/lz:Mz/\Nz
W, =1, /Y =21, /h: bending section modulus

* Remarks:

 The neutral axis passes through the centroid of the cross-sectional
areca when the material follows Hooke’s law and there 1s no axial
force acting on the cross section.

 Our discussion is limited to beams for which the y axis is an axis of
symmetry. Consequently, the origin of coordinates is the centroid.

 Because the y-axis Is an axis of symmetry, it follows that the y-axis

IS a principal axis. So is the z-axis.
11



Sample Problem

« A strain gauge is placed under cross-section C of a simply supported
beam shown. Under the concentrated load P, the strain gauge reads ¢
= 6x 104, Find the magnitude of P for E = 200 GPa.

Q;? F D 7@7 40 mm
-— 05 m »| |+0.4 M —=— 20 mm

12



e Solution:

o. = Ee =200x10°x6x10™* =120 MPa
M. =o.W, =640 N-m

M. =0.5R, =0.5x0.4P =0.2P =640 N-m
— P =3.2 kN

13



Sample Problem

 Find the support position (a) at the condition of minimum
“maximum normal stress” for the overhanging I-beam shown below,
under uniformly distributed load g.

FA g FBA « Solution:
P 1. reaction force at the
supports. Due to symmetry:

a 9,2
| 1 Fo=Fs =ql/2

X ' 2. Equation of bending
( moments:
M :—%qx2 XE[O,a)
x
1 , 1
M :—qu +=gl(x—-a) xelal-a)

14



3. Diagram of bending moments:

ga’ ~ga’
- Z}E
N
e
gl® qla
8 2
ga’ 1 (1Y 1 B
|‘7—‘§q(z) +§q'(‘ ?
ga® ql* gla__
2 8 2

—a~0.207-1

 Equating the absolute
value of the negative and
positive moment
extremities results in
minimum bending
moments and hence
minimum “maximum
normal stress.”



Sample Problem

 Find the maximum tensile and compressive stress in the T-beam
shown below. q = 10 kKN/m

AERNENRRRRRARE

. 22m . 1Im
] N N N
e Solution:

1. Centroid (neutral surface, neutral axis):
DAy, 80x20x10+20x120x(60+20)
TS T 80 x 20 + 20 x120

2. Moment of Inertia:

By the Parallel Axis Theorem: | . =1_+ Ad?.

3 3
|, = 80150 +80x20x (52— 10)2 + 29x 120

=52 mm

+20x 120x (80 —52)2

=764x10%* mm? =7.64x10°% m? 16



3. Reaction forces and diagram of P EREER
bending moments Fa Fg

X
0=> M, = F, =2327KN

— F, =10x3.2—F, =8.73KN

A X5 = 0.87 m @E
qXZ e B
M (x) = Fx -9/ xe[0,22m) :

5 3.8 KNm
M (x)=Fx+F, (X_2_2)_qx4 x€[2.2m,3.2m)

4. Maximum normal stress (At cross-section B)
. (-5x10°)x(-52x107)
i 7.64x10°

. 3 . -3
_ (£5x107)x[(A40-52)x107] _ g7 6 105 pa = —57.6 MPa

17

—34x10° Pa =34 MPa

O

O max -
7.64x10°°



5. Maximum normal stress (At cross-section D)
. :(3.8><103)x[(140—52)><10—3]

= 43.8x10° Pa =43.8 MPa

O-max —
7.64x107°
o (3.8><103)><[—52 ><10_3] ’
max 7.64x10°° (> <Nm
A Yo=087m
NP B C
3.8 KNm

6. Maximum normal stress
« Maximum tensile stress: lower edge of cross-section D (43.8 MPa).

« Maximum compressive stress: lower edge of cross-section B (-57.6
MPa).

18



Normal Stress Strength Condition

e For ductile materials

e For brittle materials

+ + M -
O rax :(VT] S':G ], ‘Gmax‘—|VTZ S':G }
Mmax Mmax
« The maximum positive and negative bending moments in a beam

may occur at the following places: (1) a cross section where a
concentrated load is applied and the shear force changes sign, (2) a
cross section where the shear force equals zero, (3) a point of support
where a vertical reaction is present, and (4) a cross section where a

couple is applied.
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Remarks on Strength Condition

« The maximum tensile stress and the maximum compressive stress
sometimes don’t occur on the same cross-section.

 Usually, the allowable bending stress is slightly higher than the
allowable uniaxial tensile/compressive stress. This is because the
bending stress only takes extremities at the upper/lower edges of
bending beams while the maximum axial stress is uniformly
distributed on bar cross-sections.

[ Strength check
 Three types problem that are

typically addressed by strength  { Cross-section design
analysis:

\ Allowable load

20



Sample Problem

e The dimension and material of the two cantilever beams shown are
Identical. Find the allowable load ratio of these two beam based on
the normal stress strength condition: P,/P, = ?

Pj .

(a) (b)

21



e Solution :

- _Miw: Rl PRI
™l W, bh® /h o bh?
12/2 6
- _ Miwo _ Pl
max 2 Wzg hbz
6
P h
Gmaxl=O' > — = —

max 2 PZ b

22



Sample Problem

 Two identical rectangular beams are placed together and subjected to
a concentrated load as shown. Find the allowable load [P] if the
allowable normal stress is given as [o]. What is [P] if the two beams

are pinned together?

\%: -I

NN

23



-
« Solution
1. when the beams are not pinned together, each beam has its

own neutral surface and carries half of the bending moments.

b(h/z) bh2
W = 6 24
M__/2 M__ 12PI
O o = = = > S[J]
W, 2W, bh
2
= [P] < bh’[o]

121

24



2. After the beams are pinned, there exists only one neutral surface

M_. Pl

— max <
Gmax W bh2/6 — [G]
2
1< bh6Ea]

* |t can be seen that the load carrying ability are doubled after pinning.

25



Sample Problem

« In ancient China, the typical aspect ratio of the cross-section of
rectangular beams is given as h:b = 3:2. If beams were made from
circular trees, employing the strength theory prove that the above
ratio is close to the optimal aspect ratio. .

achieves the maximum value.

b +h* =d*
2 2 2
w, b _ b(d’ ")
0 0
oW, d? b2

— ———=0 = b=
b 6 2




Sample Problem

« Given P =20 kN, [o] = 140 MPa. Compare the material

consumption for the following three types of cross-sections: (1)

rectangle with h/b = 2; (2) circle; (3) I-shaped.

e Solution:

Diagram of bending moment.

Gmaxzmﬁ[a]:
WZ
3
W, > M e _ 20x10 m® ~143cm’

7 [o]  140x10°

(1) For rectangular cross-section

2
WZ:%:»AF?zcmZ

P =20kN
/]
/ '
/—
/]
4 | =1m

-20 kN.m
X

My

27



(2) For circular cross-section

d?3

W, = 2:>d =11.3cm = A =~100cm?’

Zz

(3) For I-shaped cross-section

Check the table for I-beam: W =141 cmd = A, = 26.1 cm?

* |-beam consumes the least material while circular beam costs the
most.

 The maximum stress in the I-beam exceeds the maximum allowable

stress less than 5%. This is allowable in engineering practice.

28



Sample Problem

 For the casting iron T-beam shown, the allowable tensile stress [o*]
= 30 MPa, allowable compressive stress [c "] = 60 MPa, moment of
inertia 1, = 7.63x10°m#. Analyze the strength condition.

9 kN 4 kN *
A l B l 52 mm | | 7
/% C D A
| 88 mm
1m —>'<71 m 1m ~>|
2.5 kN 10.5kN —

e Solution:

M \14kN.m

\J
Diagram of bending moment. -



e For cross-section C:

o= 2'5|X88 — 28.8MP, <[c"]
‘O_r;ax _ 25)((—52) S[O'_]

z

e For cross-section B:

ot = (=4)><(=52) _ 27.3MP, <[c*]

max
I y4

max

o

|(_4I)X88| — 46.1MP, <[o]

 The strength condition of the beam is satisfied.
30



Sample Problem

 For the T-beam shown below, the allowable tensile and compressive
stress are given as [o*] and [o °] respectively. Find the optimal ratio
for y,/y,. (C denotes the centroid of the beam cross-section.)

" Pl Y1¢

Yo

AN
O
N Y

31



e Solution:

« The maximum bending moment occurs at the fixed end A. Make the
upper and lower edge of cross-section A reach [¢*] and [o 7]
simultaneously:

+ Mmaxy12[6+]

GmaX — I

| = [ <[]
Omex M:m
‘Ur;ax Y, [0 ]

32



Stress Concentrations

Stress concentrations may occur: ook ( sz
* In the vicinity of points where the loads are applied - max
* In the vicinity of abrupt changes in cross section

3.0 | " 3.0 ]
2.8 IHH M f < . 28 \ \\ | T
I (A I \\ A\ (T =J)2
2.6 ,\l\ \‘ 26 \ h ‘,ﬂ"%:i_ t § .
24U \ k\\\"\ _-Lb=3 54 \\\\§,<r15 ~| |-ar
MR\ NERWN\
2.0 \ \E\g&\] 2 i K 2.0 \\:\E\Qﬁli_um
L5 .\\ SRSy " NSNS
1.6 \ AN \xﬂg}:%x 6 %KEEE%‘K
| 4 \\\Ex‘_“ MR%EE: y EE:E%
~——1.02 ]
1.2 1 01 1.2
1.0 1.0
0 0.05 0.10 0. lf 0.20 0.25 0.3 0 0.05 0.10 0.15 0.20 0.25 0.30
e rid
Stress-concentration factors for flat Stress-concentration factors for flat
bars with fillets under pure bending bars with grooves under pure bending

33



Bending of a Composite Beam

Wood-steel beam  Bimetallic beam Reinforced concrete Beam  Sandwich beam

8=l; c=Ee=EY
P P

« At the contact surface the
stresses in the two materials are
different.

 The y-coordinate is measured

from the proposed neutral axis.
34




Bending of a Composite Beam

0=F,

=Ja GldA+j o,dA

— O:ZEiAiyi

=. —ydA+IA2—ydA

\C )
T,

 This equation determines the exact position of neutral axis.
« For an arbitrarily defined y-coordinate: ¥ = Z EAY /Z EA.

 Bending stress & Moment- curvature relatlonshlp

M, :jAy.adAziZ;L\ ZdA:;ZEilZ.i =

=0 =EkE&g=E

Y
Yo,

—

I\/IZ

1
10 ZEilz-i

ZEZ.

Z

35




Approximate Theory for a Sandwich Beam

» Provided that: E, >> E, /® =5
b b .
I, == (h*=h),1,, ==’
z1 12( c) z2 12 c @ ;lc= [
3 3 3
|, :b(h —hc)/12: 1+§ _1z§ . 7 150mm |
, bh? /12 h h, (& f® J 160 mm
El, E, 6t ' - '
E,l, E,h e b= 200mm—] [r=35mm
 If E, =72 Gpa (Al), E, = 800 Mpa (Plastic), 2t/h. = 1/15:
_El, 723
E,l, 0815
 Provided that: E 1, >>E,I,
M M A conservative theory.
p El,+El, El,
E E M,y
L= ' M. y= — M ~ —2 ~0
:>O-I E1|21+E2|22 Zy Ellzl Zy - Gl Izl GZ

36




Sample problem

- Determine the maximum normal stress in ®
the faces (Al, E; = 72 Gpa) and the core ./ ltz
(E, = 800 Mpa ) using: (a) the general @ )
theory for composite beams, and (b) the he =
approximate theory for sandwich beams. M 5 O S
= 3.0 KN-m. % f® J 160 mm
e Solution: . ' fies
» (a) the general theory oSS mImT
|, = %(h?’ -h$)=12.017x10"% m*, 1,, =56.25x10"% m*
= E|,, + EZI22 =910.2x10° KN-m?*
h/2 h. /2
=(0y) = M, (/2) =19.0 MPa, (o,) M. (/ ):0.198 MPa
™ E1|21+E2|22 e E1|21+E2|22
* (b) the approximate theory
M, (h/2)

(Jl)max ~

=20.0 MPa, (o,)_ ~
z1 37



Sample problem

« Calculate the largest tensile and compressive
stresses in the wood (E; = 1500 ksi) and the
maximum and minimum tensile stresses in the
steel (material E, = 30,000 ksi) M = 60 Kip-in.

e Solution:
« Neutral axis:

0=EAY,+E,AY, =-1500(4x6)(h —3)+30000(4x0.5)(h,-0.25)
h+h, =6.25

—h, =5.031in, h,=1.469 in

» Stresses along line A, Cand B

= (0,), =— EMN 31k (01). = EM, (h, ~0.5) =0.251 ksi
E1|21+E2|22 E1|21+E2|22
—(0,), = EM:(:205) g oan i (o), = —E2Mele 767 s
© E1|21+E2|22 ° E1|21+E2|22

(62 )C _ EZgC — 20
(0_1)(; E.&c 38




Bending of a Curved Beam

/ / f
/ ':-\._ 'r' \ {-' I
r H y
,H,r f,r '\\x \ Ha .
! i “,
,0 ; 5 T f\r — "t. r I
f 2 R \ p P H — 0 +A8
Jf/ rf “\ \\ P -" M’ / / / \ \
r , r#
. A
/ ’ ' - ‘ \ B
/ Al ._B Y ] 'z»{m /
Y "l AT | DA, T i
_.-.__,-' & L II Il 1 - y I r {.-' -
F{ Tk f '.I N.A ~ X
|I III — 4
Yy vy

y
« Geometry
« Length of neutral surface remain unchanged: o6 = p'¢’

« Change of arc length: AIK =r'0'—ro=(p'+y)0' —(p+Yy)0=yAl
- Longitudinal strain: g:AJJ_KZXM_ y A0 _r-pAb

r ¢ p+y 6 r o

e Hooke’s law: o —Es— Y EAC __ ¥ EAG Tr—pEAO
| r ¢ p+y 0 r 6
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Bending of a Curved Beam

e Neutral axis:

0=F, =[ odA= jr_pE

AO

0

—> | O =

A

AT

d—A ]

dA

1
-5

o A

dA =

EAG
TL@‘?

T

|

Jan

\x. Al

» Distance between C and centroid: ¥ = % jA rdA = p

» Static equilibrium and bending stress

O =

EAH(Ar
0

y EAQ

M =j y-adA:j‘AyTz%dA

0
20A+ pA)

r—p EAO

po+y 6

r O

dA =

—

—

(o4 0 r
EAO M, Iy
o A(F-p) o
o — M.,y MZ(I’—,O)

_A) 2 2
:j(r p) EAO _EAHIAr 2pr +p° 4a
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Bending of a Curved Beam

 The change in curvature of the neutral surface :

AO M

Z

0=p70, =
PETPY T TEA(T-p)

1 1 ¢ 1 1A M

P p po p p 6 EAT-p)p

Y4

 Radius of neutral surface for various cross-sectional shapes..

(' C
* »
| :
| |
| |
| |
ik N
h | | o
|
| .
[
b
Rectangle Circle
/ f 2 74
p - rT'.'.- /0 = il I:T' — ‘hﬁ}
In ﬁ

C (
T »
|*_L;JJ_F

7 R i

f-""’;f—
~= T~

I
—
by

Triangle Trapezoid
+h Lr¥b, + by)
p B g Iy p - !1 i I 3 Ia j |!1 ] y
F]” Pl 1 (Byrs — byry ) In 7. — hlby—by)
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Sample Problem

 Determine the largest tensile and compressive stresses for a
curved rectangular bean shown below, knowing that

b=25iIn, h=15iIn, r=61In., M =8 kip-in., E =1500 Ksi.

« Solution: 5 ¢
/]
%—b r+h/2£:blnr+h/2 f,f \\
Ar r-h/2 r r_h/z j! \\
A h ] )/ F \ T
= p= d_A_InF+h/2_5'9686 In. y \ 2
J. AT r-h/2 ,i ~ )"f/ X/
h . {//\ 4 | ,f-"/A\éL f

S Fop=F-———_-00314in. L "> LA

i+ h/2 | |

F—h/2 b

* |t Is necessary to calculate p with enough significant figures in order

to obtain the usual degree of accuracy. -



e Largest tensile and compressiv .
sz MZ (r—p) ) o I
O = — — —
A(I‘—p)(p+y) A(r—p)r

= o, =0 (r=6.75)=7.86 ksi

= Opin =0 (r =5.25) = —9.30 ksi £ = 5.9686 in. F=6in.
» Stresses approximated by the Neutral axis
theory for a straight bar: N
M, (h/2 c=00314ind LN |
e min 4+ z( / ) — +8 53 ksi 0.0514 in. K\\

z Centroid
 The change In curvature of the neutral surface :

2 M, = 0.00758866

P p EA(T-p)p
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Shearing Stresses due to Transverse Loads

Separate beams

Neutral axes }/

o /
" Neutral axis

« If friction among beams is small, they will bend independently.

» The bottom surface of the upper beams will slide with respect to
the top surface of the lower beams.

 Horizontal shearing stresses must develop along the glued
surfaces in order to prevent the sliding.

 Because of the presence of these shearing stresses, the single solid
beam Is much stiffer and stronger than the separate beams.

!
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Shearing Stresses in a Rectangular Beam

/

« TwO assumptions:

- Shearing stresses acting on the cross section are parallel to shear
force.

- Shearing stresses are uniformly distributed across the width of the
beam, although they may vary over the height.

45



Shearing Stresses in a Rectangular Beam

m m, m m |
b B VS M;E ‘T'-’_MﬂfMii
71 B g N
N v/ a__ap )

F 5

dx dx r

My " (M, +dM ”
o =My (M, +dM,)y

- Z Z
e Horizontal shear forces/stresses
dM

dF =F,-F = Izzjay'dA
, g dv | YIA Es
Tave(y): — z *A _ _S%z :Tave(y)
bdx dx I,b | b
shear flow = f :d_F:T;VGb: RS,
dx |

46



Shearing Stresses in a Rectangular Beam

* Vertical shearing stresses:

3 :Jb/Z J-:/zyldA:bj:/zy,dAZB[hT:_yzj ‘

b2 2
b(h?
F I
82[4 yj [, ¥ h
= Tae (V)= “oall har

bh* (h/2)

12 J
= (Tave )min = Tave (i h/2) =0 (Tave )max = Tave (0) = ?;—FAS\

« If the width of the beam Is comparable or large
relative to its depth, the shearing stresses at C, and
C, are significantly higher than their midpoint.

 Theory of elasticity shows that, for h > 4b, the
maximum shearing stress does not exceed by more
than 0.8% than the average value.




Effect of Shearing Stress/Strain

« If the shear force is constant along beam axis, warping is the same at
every cross section.

2
_‘ 7/=T/G=3FS [1— Y 2}
P o o OAL (h2)
B o =7 (£1/2) =0
‘ Ymax =7(0) = 2GSA

* In portions of the beam located under a distributed or concentrated
load, normal stresses will be exerted on the horizontal faces of a
cubic element of material, in addition to the stresses.

w P| Pw P}
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Effect of Shearing Stress/Strain

e Uniaxial stress state Is violated due to the existence of
shearing stress..

* Plane hypothesis is violated due to the existence of shear
strain.

 The error involved, however, Is small for the values of
the span-depth ratio encountered in practice.

 Warping does not substantially affect the longitudinal
strains even when the shear force varies continuously along
the length.

 Thus, under most conditions it is justifiable to use the
flexure formula for nonuniform bending, even though the

formula was derived for pure bending.
49



Shearing Stresses in a Wide-flange Beam

 The shearing stresses in the web of a wide-flange beam act only in
the vertical direction and are larger than the stresses in the flanges.

 The shearing stresses in the flanges of the beam act in both vertical

and horizontal directions.

 The shear formula cannot be used to determine the vertical shearing

stresses in the flanges.

« However, the shear formula does give good results for the shearing

stresses acting horizontally in the flanges.

—t—p |
Y Y

Y

- | —]
k k J

/,_,7
y
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Shearing Stresses in a Wide-flange Beam
e N
) "

T:Flszst 8'|:t{b(h2 h?)+t(h? -4y

| _bh® (b-t)h} 1
Z_(12 12 12
2 - T._.
—r(y=h/2)= T (bh -bn?) |
= 3 . Y Flange
=r(y=0)=2= > (bh® —bh +th?)

Z

t [ min

max

(bh® —bh +thf)

e Shear force in the web

o =, 0= ey =t oo -t

th1 K ) th1
3bh —3bh? + 2th/ 27,
» For beams of typical proportions, shear force in the web is greater than 90% of the

total shear force; the remainder is carried by shear in the flanges.
51



Shearing Stresses in a Wide-flange Beam

* . b h2 2
S, _J.AiydA_ELZ_y j | b | l N
x ~ t.
LU (bh* —4by?) R I
I,Lb  8l,b X 7
F h ’
:><Tmax :T(y:ihl/z)ZSIZSb(bhz_bhlz) _"_WGb/ y /
Toin =7(y=%h/2)=0 ' |/
1Y Flange

 Discontinuities exist along the web/flange boundaries.

 The ratio between the minimum shearing stress in the web and the maximum stress
In the flange is bit.

* In practice, one usually assumes that the entire shear load is uniformly carried by
the web (7= F¢/A,p)-

« We should note, however, that while the vertical shearing stress in the flanges
can be neglected, its horizontal component has a significant value that will be

determined as follows. -



Shearing Stresses in a Wide-flange Beam

 Consider a segment of a wide-flange beam
subjected to the vertical shear F.

» The longitudinal shear force on the vertical cut
(aM,)S; _ (Fydx)s;
IZ - IZ

/
 The corresponding average shearing stress / \
dF _F,S; </ > :

(T;X )ave = (TXZ )ave ~ t dX Iztf

=
v
- ’\YE
o
-|-|

dF =

—

 Previously found a similar expression for
the shearing stress in the web

F.S’
(Txy )ave - |S tz

z

* NOTE: 74, ~0 inthe flanges
7xz #0 inthe web Ty Tym

53



Shearing Stresses in a Wide-flange Beam

S; = [ ydA=st h/2

’ FS; shF
h > 7T = —
2 Lt 2l
h :>T1:T(S:b/2): bhFS
) DN
=1, =7l =
S T]
__Eks; K (bt h/2) bht,F,
: Izt Izt 2|zt
bht, F
= f2 :th: :21:1

Rs; Foibt, h2+(th/2)(h/4)]

max

Izt Izt

bt
=>f . = ntF [_f +E]
21, t 4
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Shear Flow in a Wide-flange Beam

t ) ‘ » The variation of shear flow across the
| * ; | ~section depends only on the variation of
} 0 the first moment. c o
! f — Ta,lvet — =
N.A. N.A. IZ
- | =t  For a wide-flange beam, the shear flow
4 | | Increases symmetrically from zero at A
and A4°, reaches a maximum at C and the

Fs decreases to zero at E and £

B « The sense of f in the horizontal portions
of the section may be deduced from the
f,=2f, sense In the vertical portions or the

C sense of the shear Fq.

 The continuity of the variation in f and
=20 the merging of f from section branches
E| E suggests an analogy to fluid flow.
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Shear Flow In a Box Beam

A

i Tz
——

|

N.A.

» For a box beam, f grows
smoothly from zero at Ato a

J[_ maximum at C and C” and then
" decreases back to zero at E.

&

Z
o=
- e fe— — —

e A f— —
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Shear Flow Iin a Thin-walled Beam

 The shearing stress formulae can be used to determine shearing
stresses in thin-walled beams, as long as the loads are applied in a
plane of symmetry of the member.

* In each case, the cut must be perpendicular to the surface of the
member, and the shearing stress formulae will yield the component
of the shearing stress in the direction of the tangent to that surface.

» The other component may be assumed equal to zero, in view of the
proximity of the two free surfaces.

1
!
}
}
C

E—.i-'—l'-'—i- '-'i—'-'l—-i—:F

t

t
t
t
)
D

N | = =

e
— i —

ﬁ—j——h-—h-—h— —
|
—l e




Shear Flow Iin a Thin-walled Beam

Free surface

Free surface \ » Horizontal shearing stress

dM,
IZ
dN,  dM, f ydA  F.s°

=>7=—r2 =
tdx  dx It |t

rtdx =dN, =

[ yon

e Shear flow
_dF _FKS;
dx I

z
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Sample Problem — Shearing Stresses in Flanges

= 0.770 in. ol SOLUTION:
Hi E r |_T » For the shaded area
a
5.2 in. 52200 - 4§15, S; =(4.31in)(0.770in)(4.815in) =15.98in’

10.4 in.
» The shearing stress at a

A o

F.s: (50kips)(15.98in°)

= — = 2.63Ksi
.t (394in*)(0.770in)

|, =394in*

Knowing that the vertical shear
IS 50 Kips in a rolled-steel beam,
determine the horizontal
shearing stress in the top flange
at the point a.
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Sample Problem — Shear Force in a Web

» A beam is made of three planks, nailed together. |<—100 mm->|
- - T \
Knowing that the spacing between nails is 25 mm and T 90 mm
that the vertical shear in the beam is Fg = 500 N, f
determine the shear force in each nail. 100 mm
20 mm — | =—
SOLUTION: l
« Determine the horizontal force per unit length or shear QOTmm

flow f on the lower surface of the upper plank.

S, = Ay =(0.020mx0.100m)(0.060m) =120x10"° m’ < 0.100 m ] < 0.100 m
A
|, =16.20x10° m* | /
* 6,3 oC’ . —

. RS _ (500N)(120><_160 4m ) =3704'\V T - j;%_o

| 16.20x10°m m 0.020 m y : m

’ | ol 0.100m

_ _ NA. NA.

« Calculate the corresponding shear force in

each nail for a nail spacing of 25 mm. o
F=0.025f = 0.025(3704) =02.6N 1 = 0.020m
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Sample Problem — Shear Force in Flanges

0.75 in,—:-*‘ ‘*—13 in,—*‘ ‘*-:—{]'.75 in.

_l SOLUTION:
! = —  0.75in. _

T « Determine the shear force per
= unit length along each edge of
4.5 in.

the upper plank.
v Re— — T

 Based on the spacing between
nails, determine the shear

A square box beam is constructed _ _
force In each nail.

from four planks as shown.
Knowing that the spacing between
nails is 1.5 in. and the beam is
subjected to a vertical shear of
magnitude F¢ = 600 Ib, determine

the shearing force in each nail.
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Sample Problem — Shear Force in Flanges

3 in.

e

0.75 in.

'

~—3in. —

Al

y = 1.875 in.

}

3in.

* For the upper plank

z

- 4.5in. ——

S; = A'y =(0.75in.)(3in.)(1.875in.) = 4.22in°

e For the overall beam cross-section

z

|, =4(45in)’ -4 (3in)’ = 27.42in"

SOLUTION:

« Determine the shear force per
unit length along each edge of

the upper plank.
 (6001b)(4.22in’
2f:FSSz:( )( — ):923E
l 27.421n In
— f = 46,1522

In

 Based on the spacing between
nails, determine the shear
force in each nail.

F=1/ =(46.15_|—bj(1.5in) =69.2251b
in
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Shearing Stresses in a Circular Beam

 The shearing stresses can no longer be A
assumed parallel to the y-axis. 1

 On the boundary of the cross section, the
shearing stress must act tangent to the
boundary.

 Only the neutral axis is an exception.

 However, at a horizontal line we
may further assume:

- Shearing stresses are concurrent at the intersection of boundary
tangent and y-axis.

- The projection of shearing stresses on y-axis are uniformly
distributed across the width of the beam.
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Shearing Stresses in a Circular Beam

« [ y'=d/2 cz=\Jd2/a-y? .
S =. dA j:_\/%:yy dy dz

=] d/22y\/dz/4 y“dy =J.yy:/2\/d2/4—y’2dy’2

Jy'=y
=d/2
g(dz/4—y'2)3/2 4 :%(d2/4—y2)3/2 r

y'=y

Y
RS stg(d2/4—y2)3/2 _Fs(d2/4—y2)

")= b _(nd4/64)><2\/d2/4—y2 - 3nd*/64
2d° 4
38 _F5 4R

= Zr TR0 e e 007 (Tcd4/64)><d N nd?/4 “3A
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Shearing Stresses in a Hollow Circular Beam

« Solid circular cross-sections
S (y=0)=Ay =(nr*/2)(4rf37)=2r"/3 "7

Fs F(2r%3)  4F
= T =7 (Y =0)= Ist :(nr4/4)(2r):3; P A or ¥ 377

Hollow circular cross-sections
S, (y=0)=AY,-A¥,=2(r;-r)/3
FS{Z(r23—|'13)/3}
{n(r24—r14)/4}{2(r2 -, )}
4R, (B Hnn 41
3A (7 +17)

- For a thin-walled circular beam: 7, =

=5 :r(y:O):

- e

aF, (765 +17) 2R

3A (r22+r12) A
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Shearing Stresses in an Equilateral Triangular Beam

3 2 3
| _ﬁ_lbh(lhj _bn” |< b >|
3 36

‘12 2 | ‘ :
g, e el o) 24 (T ]
t(Y):%b ! Xgh/sll
r(y)= ':Isst: _ Fs(bi’z(h—y:)/?vh) :12Fsy'(?_y') z?/_g,%é y l
= £ (bn'/36)(oy/h) b
Tus =7(Y' =h/2) = 3b':]s _ ?;FAS

« Although the theory for maximum shearing stresses in beams is
approximate, it gives results differing by only a few percent from

those obtained using the exact theory of elasticity.
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Shearing Stress Strength Condition

e
T = i <[7]

Max K Izb /max




Sample Problem

20 KN/m

 Acircular beam is subjected to

a uniformly distributed load g A;;'Q i l l l l i i i l l l l i i lB
= 20 kKN/m. The allowable 4m 7%7
normal and shearing stresses ) |
are [o] = 160 Mpa, [z] = 100 s f4() KN
MPa. Find the minimum
required beam diameter.
« Solution 40 kN
 Diagram of shearing WH W
forces & bending
moments My A0 KN.-m
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e For normal stress:

3
Oy = M e <l[loc]= 4OX];O <160x10°
W, td
32

—d =137 mm

* For shearing stress:

3
Tome = 4 B <[r]= 4>< 4OX120 <100x10°
3 A 3 rd
4

—d > 26.1mm

= |d_.. =137mm

69



Rational Design of Beams

« Normal stress plays the most important role in satisfying the strength

condition of beams under bending.

M
o... = z <lo
= ot | <[0]

Z / max

« Minimize the maximum bending moments by proper arrangements

of the form and position of loading and constraints.

 Proper design of cross-sections to maximize bending section

modulus.
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Rational Design of Loads & Constraints

~

F/2 F/2

A L A

|
vl

+
FI/8

g
b

l
D

2l 0.2l

o
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Rational Design of Cross-sections

5 Fl
| 2 ange
"(T S [ Ny "(_ |
h / \ ~—Web
0 h g 0 h 0
\ / Flange
Y — v — —Q N
b ‘J d . \ |
) ] ) " 4
2 3 2(A/2)(h?/4)
6 Y /
=0.125Ad =0.5AN
hh* Jz

« Compare a square with a circle: w, = - 172’ Ad =0.1477 Ad

« Among beam section choices which have an acceptable section
modulus, the one with the smallest weight per unit length or cross
sectional area will be the least expensive and the best choice. -



Symmetry vs. Asymmetry

« For materials with [6*] = [o "], symmetric cross-sections may be
used such that the maximum tensile and compressive stress are
equal in magnitude at the upper/lower edges.

« For materials with [o*] < [o ], I.e. casting irons, cross-sectional
neutral axis should deviate toward the tensile side.

NN
—
¢
y
N
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Nonprismatic and Constant-strength Beams

« The maximum normal stress stays the same for every cross-section.

O = \M ()W (X)} . <[0]




Unsymmetric Loading of Thin-Walled Members

X

o
/
&

C

A

¥

//

—

>

7

N,

A.

Ng—|—

Ne———|—

M

» Beams loaded in a vertical
plane of symmetry result in
M deforms in the symmetry

plane without twisting.
M zy FSS:
O = : Tove =
| ot

« Beams without a vertical
plane of symmetry bend
and twist under transverse
loading.

*




Unsymmetric Loading of Thin-Walled Members

d; - ¢« < Ifthe shear load is applied such that the
e A beam does not twist, then the shearing
= - stress distribution satisfies
S
F.S, 2 5 2
DESS—=SF D ﬁx Tove = Isztz’ Fs=.£fd3, F=_/[fds=—_£[fds=—F’
F, ] | .
B g 2 Bi—==* « Fand F’ indicate a couple Fh and the
i need for the application of a torque as
. | | well as the shear load.
D E st)i E thve
§ :
e * When the force P is applied at a
P g < distance e to the left of the web
Sy /4 aumne centerline (shear center), the member
“toaf bends in a vertical plane without

e twisting. 76



Sample Problem

O

N.A.

b

f e Determine the location for the shear center of
T  thechannel sectionwithb =4 in.,h=6in.,
andt=0.151In.

 Determine the shearing stress distribution for
F. = 2.5 kips applied at the shear center.

—
—

e Solution
- G — t
| | * 1 1 h | 1
I | 3 3 2
| =1 +2I =—th°+2| —bt"+bt| — | |=—th“(h+6b
A f ]T z web flange 12 |:12 (2] :| 12 ( )
/2
b b * b 2 2
| F:fde:IFSSZ dszijsthS:FSthb __SFb
; -, 5 2 41, h(h+6b)
Fh 3b? b 4in. .
= e= = = h = 6_ :l.6|n.
| E FS (h+6b) 94 2 In.

3(4in.)



F, =2.5kips
B

« Determine the shearing stress distribution for

O

F< = 2.5 kips applied at the shear center.

— FSS; — FS st

h_Fh,

I
I
:
il h=6in « The maximum shearing stress in the flanges
I
I
I
I
I
|

It Izt( )2_2|Z

‘ Fhb 6F.b

T =Tg = =

™% 2(4th?)(h+6b) th(h+6b)
- 6(2.5kips)(4in) - .
- (0.15in)(6in)(6x4in +6in) 222kl

~ = =24+ The maximum shearing stress in the web
(S;). =bt(4h)+(4ht)(4h)=tht(h+4b)
_FS, Fiht(h+4b) 3F(h+4b)

Tt T Lth?(h+6b)t  2th(h+6D)

_ 3(2.5_k|ps)_(4><4|n _+6|n)_ 306k
2(0.15in)(6in)(6x6in+6in)
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