
Strain Measures 



Outline 

• Concept of strain（应变的概念） 

• Deformation and displacement gradient（变形和位移梯度） 

• Cauchy-Green strain tensors（C-G应变） 

• Polar decomposition（极分解） 

• Jacobian of deformation（变形雅可比） 

• Different measures of strain （应变度量） 

• Simple deformations（简单变形） 

• Small strain theory（小应变理论） 

• Material and spatial time derivatives（材料时间导数和 

 空间时间导数） 

• Stretch rate and spin rate（变形率和转动率） 
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Concept of Strain 

• Elongation: δ 

• Percentage of elongation: 

• Stretch: 
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Different Measures of Strain 

• Engineering strain: 

• True strain: 

• Difference in length square: 

• Difference in length square: 

• Logarithmic strain: 
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• All these measures are equivalent for small elongation 

and thus equivalent from an engineering point of view. 

• How to generalize these to 3D?  



Deformation Gradient Tensor 

• Deformation gradient: 

• We wish to find a measure of strain, a relative measure of 

how material points move with respect to each other, that 

is independent of rigid body rotation.  
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Displacement Vector 

• Consider an arbitrary fiber 
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• Define displacement vector 

• Deformation gradient 

contains information 

about both stretch and 

rotation: 

• In order to separate stretch from rigid body rotation, 

consider the dot product of two fibers. 

• Since the dot product only depends on the relative angle 

between the two vectors, rigid body rotation can be been 

effectively “filtered” out. 
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Cauchy-Green Strain Tensors 

• Consider the dot product of two differential segments in 

both the undeformed and deformed configurations 

• Right Cauchy-Green strain tensor 

• Left Cauchy-Green strain tensor 

• Both are symmetric. 
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Physical/Geometric Interpretations of C  

• General matrix form 

11 12 13

12 22 23

13 23 33

C C C

C C C C

C C C
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
 
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• Principal values/directions 

• Consider a fiber initially along 

one of the base vectors  

• C11 is the stretch of a fiber initially aligned along e1.  
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Physical/Geometric Interpretations of C  

• Consider two initially 

perpendicular fibers 

• C12 is a measure of the angle between two fibers 

initially aligned in the e1 and e2 directions. 
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Physical/Geometric Interpretations of C  

• The right Cauchy-Green strain 

gives the information how a 

small block of material 

deforms. 

11 12 13

12 22 23

13 23 33

C C C

C C C C

C C C
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 
  
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Physical/Geometric Interpretations of C  

• In principal coordinates, the 

above geometric 

interpretations suggest  

• This indicates that the fibers along the principal 

directions will remain perpendicular to each other after 

deformation.  
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Lagrangian vs. Eulerian Descriptions 

• The above formulation of strain has been focused on making 

predictions about the deformed configuration (called Eulerian) 

based on know information in the undeformed (called Lagrangian) 

configuration. 

• Alternatively, we could reverse the direction of analysis. We could 

start from the deformed configuration and try to predict the 

undeformed configuration.  

Leonard Euler (1707-1783) Joseph Louis Lagrange (1736-1813) 
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Physical/Geometric Interpretations of B  

• Consider a fiber aligned in e1 

direction after deformation 

• The stretch that has happened to a fiber aligned in the e1 

direction after deformation is given by 

1 
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Physical/Geometric Interpretations of B  

• The off-diagonal term has the following interpretation  

• The original angle of two fibers that have become 

aligned in the e1 and e2 directions after deformation is 

given by 

• In matrix form: 

• In principal coordinates, 

we may define the right 

stretch tensor 
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Polar Decomposition 

• A general deformation can be 

described as stretch + rotation. 

• If stretch happens first 

• Right polar decomposition: 

• If rotation happens first 

• Left polar decomposition: 
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Polar Decomposition 

• Cauchy-Green strain tensors and stretch tensors: 

• One set of principal 

values and two sets of 

principal directions 
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Jacobian of Deformation 

• Volume after deformation: 

• The Jacobian of deformation (volume ratio): 

• The derivatives of J with respect to the components of F 

(can be proved by expanding J using index notation) 
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Deformation of an Area Element 
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Measures of Strain 

• Strains in 1D 

• Extension to 3D 
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Relation between Lagrangian and Eulerian Strain 
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Simple Deformations: Pure Dilation (no shear) 

• Right stretch tensor: 

• Right C-G strain: 

• Deformation gradient: 

• Left C-G strain: 

• Left stretch tensor: 

• Lagrangian and Eulerian strain: 

• Jacobian: 
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Simple Deformations: Uniaxial Stretch 

• Stretch along 1-direction first, 

then rotate 900 about 2-axis.  



Simple Deformations: Uniaxial Stretch 

• If rotated 450 about 2-axis: 
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Simple Deformations: Simple Shear 
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Small Strain & Small Rotation Theory 

• Assumption: displacements in solids 

are usually small compared to relevant 

structure sizes:  

• In this case, it proves to be useful to linearize all equations 

about the displacement gradient 
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Small Strain & Small Rotation Theory 

• For small strain & small rotation, there is no longer a need 

to distinguish between Lagrangian and Eulerian strain 

tensors. Basically, all strain tensors can be reduced to 

• This greatly simplifies the mathematical problem.  
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Small Strain & Small Rotation Theory 

• For small strain and small rotation, the rigid body 

rotation part is analyzed as follows:  
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• The small rotation 

tensor is anti-

symmetric. 

27 



Strain Concepts and Their Generalizations in 3D 

• Strain measures 



Strain Concepts and Their Generalizations in 3D 

• Strain-displacement relations 
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Alternative Way of Small Strain Theory 

• Normal strain 

• Shear strain 
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Alternative Way of Small Strain Theory 

• Volume strain 
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Strain Gauges 
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• Strain along an arbitrary direction 

• Strain gauges aligned along 

different directions at a solid 

surface can be used to measure 

strain in the plane of the surface.  
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• Normally we want continuous and single-valued 

displacements; i.e. a mesh that fits perfectly together 

after deformation. 

Undeformed State Deformed State 

Strain Compatibility for Infinitesimal Strains 
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• Given the three displacements: We have six equations to 

easily determine the six strain components. 

• Given the six strains: We have six equations to 

determine three displacement components. This is an 

over-determined system and in general will not yield 

continuous single-valued displacements unless the strain 

components satisfy some additional relations. 

• Not all symmetric second-order tensor fields can be 

strain fields. 

Strain Compatibility – Mathematical Context 

• Strain-displacement relationship 

34 



Strain Compatibility – Physical Interpretation 
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Compatibility Equations 
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• Differentiating twice the strain-displacement relationship 
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• The continuity of displacements implies the 

interchangeability of partial derivatives 

• This strain compatibility condition forms the necessary and 

sufficient condition for continuous and single-valuedness 

displacements (up to a rigid-body motion) in simply connected 

regions. 

• For multiply connected regions, strain compatibility is necessary 

but no longer sufficient. Additional conditions must be imposed. 
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Domain Connectivity 

• Simply connected: all simple closed curves drawn in the region can 

be continuously shrunk to a point without going outside the region. 
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• In 2-D, only 1 out of the 

16 equations is 

meaningful and 

independent. 

Compatibility Equations 
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• Only 6 out of the 81 are 

meaningful 



Material Time Derivative 

• Velocity: 

• Displacement: 

• Acceleration:  
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Spatial time derivative 
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Rate of Deformation: Velocity Gradient 

• Velocity gradient is the basic measure of deformation rate. 

• Quantifies the relative velocities of two material particles. 
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Decomposition of Velocity Gradient 

• Stretch rate: • Spin rate: 

• D quantifies the rate of stretching of a 

material fiber in the deformed solid: 

• W provides a measure of the average angular velocity of 

all material fibers passing through a material point. 
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Infinitesimal Strain Rate and Rotation Rate 

• For small strains, the rate of deformation (stretching) 

tensor can be approximated by the infinitesimal strain rate, 

whereas the spin can be approximated by the time 

derivative of the infinitesimal rotation tensor: 

• The rate of deformation tensor can be related to time 

derivatives of other strain measures. 
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