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Concept of Strain

* Elongation: o
» Percentage of elongation: ¢=5/1,
e Stretch: A=1/l, =1+¢




Different Measures of Strain

 Engineering strain:

 True strain: LS8 SNy e
] _ 21 I+ 14611, o =(57%) ’
* Difference in length square: . (P (k) _20r0)0) 5 ot
21 212 212 . 22
» Difference in length square: (=Ll ()17 _(24+9)(9)
] ] ] 2I* 21 2(l, +68)"
* Logarlthmlc Straln e = I:)$=InII—:In(l+5/|0)=5llo—%(5/I0)2+...;

» All these measures are equivalent for small elongation
and thus equivalent from an engineering point of view.

* How to generalize these to 3D?



Deformation Gradient Tensor

| ay; |
. o oty = e, =
! configuration ox;
e,
| I i : dy.  du.(x,,t
» Deformation gradient: ()= E; of)
[ [
@J: :‘ A ol . x,=const
F. = = 0. +
v ~ v O
CX j ’lj

 \We wish to find a measure of strain, a relative measure of
how material points move with respect to each other, that
IS Independent of rigid body rotation.



Displacement Vector

- Consider an arbitrary fiber 4z — g, dy = iadI
* Define displacement vector

Y= Py, x5, 05) = X+ (xp, X5, X;3)

u(x+dx)

» Deformation gradient
contains information
about both stretch and
rotation: e,

dy=ndl =Fmdl, = Fm=ndl/dl, = Fm=An

u(x)

Deformed
configuration

Original

e ,
configuration

* In order to separate stretch from rigid body rotation,
consider the dot product of two fibers. G

a
« Since the dot product only depends on the relative angle o, — Z;W"
between the two vectors, rigid body rotation can be been b
6

effectively “filtered” out.



Cauchy-Green Strain Tensors

 Consider the dot product of two differential segments in
both the undeformed and deformed configurations

dy, -dy, = Fdx, - Fdx, =dx, 'ET Fdx,

=]
T—

dx, -d¥, = Fdy, - F'dp, =&y, -FTF'dy, =y, -(F F
A
 Right Cauchy-Green strain tensor

- T —~
C=F'F, C,=F,F,

o Left Cauchy-Green strain tensor

T
EZEE . B,f; :-F,-r',quj;;

a
o —_— _\0
- Both are symmetric. h b




Physical/Geometric Interpretations of C

e General matrix form

C11
(_: — C12
| Cps

 Consider a fiber initially along
one of the base vectors

dx, =dl, 2. dy, =di7

C12
C22
Cas

Cis
C23

C33 _

» Principal values/directions

C=

C,

d;f} =dy, -dy, = Fdx, - Fdx, =d/ e, - Cd/ e, = dllgt?l(jll

T2

0

C,

0

0 |, m Lm, Lm,

 C,, Is the stretch of a fiber initially aligned along e,.



Physical/Geometric Interpretations of C

 Consider two Initially 1

perpendicular fibers

dv, =d/ e, dx, =di, e,

dy, =dl, 7. dy, =dl,7,

3

dy, -dv, = Fdx, - Fdx, = dx, - Cdx, = d/|d/, cos 8,, =d/,ye, - Cdl,,e,

C C
cos@, =+ = —L1

Ay 1 ChCy

* C,, Is a measure of the angle between two fibers
Initially aligned in the e, and e, directions.




Physical/Geometric Interpretations of C

* The right Cauchy-Green strain 2 4

Ives the information how a
gmall block of material Lo ) @i
deforms.
_Cll C:12 C13_ T
C=|C, C, C, g
_C13 C23 C33_

dl, =/Cyydl,. dl, = Cyydl,y. dl, =/Cy,dl,

—

C C C
— 080, =—=—, 0SBy = —2
ST V0 Gss VG

10

cosf, =



Physical/Geometric Interpretations of C

* In principal coordinates, the

above geometric
Interpretations suggest

C =

P

A7 0
0 A
0 0

0
0

-

A |

3

2

= 42— . _ _
Cm=Am = m, Lm, Lm,

>

E>(@>

» This indicates that the fibers along the principal
directions will remain perpendicular to each other after

deformation.
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Lagrangian vs. Eulerian Descriptions

 The above formulation of strain has been focused on making
predictions about the deformed configuration (called Eulerian)
based on know information in the undeformed (called Lagrangian)
configuration.

» Alternatively, we could reverse the direction of analysis. We could
start from the deformed configuration and try to predict the
undeformed configuration.

Joseph Louis Lagrange (1736-1813) Leonard Euler (1707-1783)
12



Physical/Geometric Interpretations of B

» Consider a fiber aligned ir 24 dy, =d/,,m  dy, =dlg
direction after deformatior

dy=Fdy = dv =F dy

3
%, -d%, = d/2 = F'dy, - F'dp, = dy, .(pr)‘ld;l - d7, - B™dp,

dif, =dig,-B 'dlg = B = 4

* The stretch that has happened to a fiber aligned in the e,
direction after deformation is given by B/

13



Physical/Geometric Interpretations of B

 The off-diagonal term has the following interpretation

-1

_ _ 1o By
dx, -dx, =d/,,d/,, cos e, =dldl,e, - B e, = cos oy, =— 11‘ 1
v 31_1 B’_ﬂ_z

 The original angle of two fibers that have become
aligned in the e, and e, directions after deformation Is

given by 3] ]

B, B, B, ‘B B Bl

 In matrix form: B=\B, B, B,|. B'=|B; B; B;

| B, B, B | By, B, By

» In principal coordinates, A4 0 0]
we may define the right U=vC=|0 4, 0
stretch tensor 0 Am

14



Polar Decomposition

A general deformation can be

described as stretch + rotation. 1

* |f stretch happens first
dx >dz=Udx ->dy=Rdz
— dy = RUdx = Fdx

1

 Right polar decomposition: £ =RrU

« |f rotation happens first
dvx >dz=Rdx > dy=Vdz
— dy =V Rd¥ = Fdx
o Left polar decomposition:F =y r

1

15



Polar Decomposition

« Cauchy-Green strain tensors and stretch tensors:

(=

F'F=(RUYRU=U'R'RU=U'U=U"

B=FFE' =VRWVR) =VRR'V' =VV' =V’

34
MCD
U, R

3 A

F 7
3 P
1 1
 One set of principal Um=/4,m, Cm=4m =RUM=4Rm (RU=F=VR)
values and two sets of =VY.(Rm)=4, (Rm)  (vn=4n,Bn=2n)
principal directions ~ = A=A, N=Rm




Jacobian of Deformation

« \Jolume after deformation: d/¥, | > dV

dV = (dy, xdy, )-dy, = &, dy,dy dy, . \
- EUAEPRQF dx,dx,dx, 1] Jdx .
= det(F )dxpdxgdxr X5 dy, 3

dx, ¢

d
—det( )dv, %
 The Jacobian of deformation (volume ratio):
7 = det(F )= det(U ) = det(V det(B det(C
dV,

 The derivatives of J with respect to the components of F
(can be proved by expanding J using index notation)

J _ g
oF, 7
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Deformation of an Area Element

Original Deformed
configuration configuration

€3

dA N = g, dv,dw, = dAn, = &, dvidw, = &, F, dv, F,dw,

=6,,€ ik Fim Fin AV, W, = F F,;lgpjk F i B OV, dw,

=F e F F._F.dv dw =F*Je dv_dw =FJdAn°

pk” pl " jm

= |—n. =Jn’F* d—annO-F‘l
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Measures of Strain

e Strains In 1D

_— Poro1y.
IO 8(1‘} = ﬁ = / ;0 =A-1 8(3) = 2220 :5(/“2 _l)
I: :I 5 / ]0 ]0 0
y [ [ —]?
| . s _1-1, y ~ I i
< ; N=—= =1- Eq) = =—(l-~
] ‘DT T ’ W 2( )

e Extensionto 3D

m: U-1) @ =(C-1)

@: (L-V) @ EQ—EI)

Deformed
configuration

Original
configuration

1
E= E (g -1 ) 1s called the Lagrangian strain tensor.

E e ([ — B _l) is called the Eulerian strain tensor.
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Relation between Lagrangian and Eulerian Strain

E:%(C—I):%(FT F-1), E, =%(ka|:m, ~5y)

E’ =%(| -B7) =%(| -FT-FY), E, :%(@m e

:3<FVE?F=%FT(L4:TF1)F=%Uﬂ.F—0=E
Fu E' F, = % Foie (S = FonFon ) oy = %(ka F.—64)=E4

N FT.-E-F* :%F‘T (FT-F=1)-F* =%(| ~FT.FY)=F
Fo'EgF =F P B F R =E;

—

—

E=F-E -F

E,=F E F

mn" nl

E'=F'".E-F*
E; = Fki_lEkI Flj_l
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Simple Deformations: Pure Dilation (no shear)

A 0 0
e Right stretchtensor: U ={0 A 0|=A1

0 0 2

» Right C-G strain: C = 2*1

« Deformation gradient: /"= RU = AR

e Left C-Gstrain: B=FF' = 2*1
» Left stretch tensor: =11

. : : | R .1 >
 Lagrangian and Eulerian strain: £ = 5(/1- —l)g,g =§(1—z )
ad =J =det(F)= A’
dV,

e Jacobian:

21



Simple Deformations: Uniaxial Stretch

» Stretch along 1-direction first, 1
then rotate 90° about 2-axis.

s

U =

VR=F=V=FR' =

/L’I = A \ /‘uH — /UIII :l

2 0 0

-

-

F=RU =

_ O O

1 O == OO
o O -

o O =
S = O |

o O O




Simple Deformations: Uniaxial Stretch

40 0] 10 0 0 0
C=[0 1 0].B=[0 1 0| g =L(1-8")=2]0 o
001 oo 4 @ ? 10 0
30 0
E=Lc-n=L0 0 o j_;/:Jzz
= 2 72 ﬂ
00 0

e |f rotated 45° about 2-axis:

2 0 0] cosd5° —sind5° 0
U=10 1 0] R=|sin45 cosd5

0 0 1 0 0 1| V=FR'. B=FF'

F=RU, VR=RU

23




Simple Deformations: Simple Shear

y, =X, +tan6x,

V) =X,
Vi3 = X5
R B
D _| g
@xi
‘ _0
]
"F=|tané

tand O]
1 0
0 1

0 01
0
0

E— o
:’f 2
9{;‘ ’If
777777777777 7777 3
F=RU, VR=RU
V=FR' K B=FF'
tand O] [ 1 tan @ 0
] O|=|tan® 1+tan" & O
0 Iy 0 0 I
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Small Strain & Small Rotation Theory

o,
are usually small compared to relevant —--

structure sizes: OX ;

* In this case, It proves to be useful to linearize all equations
about the displacement gradient

« Assumption: displacements in solids - y
1( jiil

L

ou. .
0. +— } =o. +u. . (because v.=x +1 )
) 81 I 1.J w1 I I

J

C= FHFAj — (ﬂh +u, )(::‘:rb. —I—I.-‘kj): Op T, U, Uy Uy = ‘5:3# +u, U

25



Small Strain & Small Rotation Theory

1, 1
E = > (C-1)= > (Hf_j. + ) = &, (small strain tensor)

" "

=F. F = (c‘)ﬂ, +U. X::')ﬁ + )5 Oy +t; ; +,,

Ie~

|
F_ o =
I = O, + " (HI._J,. -|—Hj_1.)

les

.1 ) 1
£ :_(i_B 1)25(”:'.; +”j,:’): &y =
 For small strain & small rotation, there is no longer a need

to distinguish between Lagrangian and Eulerian strain

tensors. Basically, all strain tensors can be reduced to
1
€ = ;(H”. - Hj._f)

* This greatly simplifies the mathematical problem.
26



Small Strain & Small Rotation Theory

 For small strain and small rotation, the rigid body
rotation part is analyzed as follows:

RU & e The small rotation

W=0V-—¢= UV—E(UVJrVU) = 1(UV—VU) tensor Is anti-
2 2 symmetric.

n®

Original f ;
1 configuration Deforme

configuration
e, & 27



Strain Concepts and Their Generalizations in 3D

 Strain measures

1D 3D

o [1-1, ,
Eqny=—= =A-1 U-1
(1) }G ;G {_ _)

-1 |
E{J:f_: 0 _1_ 4 Q—K_l]

[ [

=17 1y 1, .
€)= q;za :E(.}“ _l) E(Q—i)

<%0

.'?2—.'?‘2 l i 9 .I. -1
g = =5 1-77) Slr-27)

. a1 1 -1
For small strain: e=U—-1=1-V :_(Q_E)Z_E_ﬁ )
2 2

1) =€) T E6) T Ee) T € 1 !




Strain Concepts and Their Generalizations in 3D

» Strain-displacement relations

6 equations:
Cu, Ou, Ot
&n = Ep =7 - &=
- LA -
Ox, ox, Ox,
| Ot A |
1 equation: &= — 1| Ou, ou 1| Cu, O,
ox €1 T N +— - &3 T
2\ ox, Ox 2\ ox, Ox,
1| Ou, Ocu,
€n =51 = T3
2\ Ox; Ox

29




Alternative Way of Small Strain Theory

 Normal strain

i |
/ 2 2 | - N2 - \ 2 -
dfl —dfm *1,.|'(df1|:| +d”1] +d”1 _dfm I ctly cif ., Cliy
o — = — _ 1 2 1 - 1
dl,, d/,, \' ox, )\ dx ) X,
/ 2 ) | - - 2 ’ \ 2 -
dl, —di,, (dly+du,) +duf —dl,, | du, Cu du,
o — < 20 __ < - ] 2 1 - 2
'L'El - —_— —_ | ]+ - + .-»,_ _]. —_— -
d/,, d/,, \I o ox, ) | ax, cx,
 Shear strain
X ry
Yp=6,+06, \
u, +du,
du cu, [ ox cu
tan &, = ===
dl, +du, 1+cu/ox; ox X
| 1di,,
du ou, [ox, ou Tl
tané, = — L——=—=—1=0, 10 >
dl,, +du, 1+cu,/cx, ox, e o
u, I« >
u, +du,
cu, cu, >
=0 +60,=—L+ 2 =2¢, !
12 - 12
30

1 2
cx,  Ox,



Alternative Way of Small Strain Theory

1 - -
* \Volume strain |2 0m ou
ox, ox,
dV O, ou.,
—=det(F)=| =% 1+
A 0 Ox, Ox,
. | OU; . Ot O
If —<<l1 - 3 _ 3
X, Ox, Ox,
dv- ., cou, Ju, du, cu, | . Ou, cu,
—=l+—F—+—+0 — | =1+ +—+
dVv, ox, Ox, Ox, ox ox,  Ox,
Therefore:
dV —dr.

0 = &, (bulk strain)

v,



Strain Gauges

e Strain along an arbitrary direction
m-C-m=4=
1

m.é.m:m.a((_j_l).m
1
:E(/i;—l)zﬂm—l :

-2

» Strain gauges aligned along
different directions at a solid
surface can be used to measure
strain in the plane of the surface.

34

m,

\

m,

2
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Strain Compatibility for Infinitesimal Strains

* Normally we want continuous and single-valued
displacements; i1.e. a mesh that fits perfectly together
after deformation.

Undeformed State Deformed State

33



Strain Compatibility — Mathematical Context

» Strain-displacement relationship

ou N ow 1(8u av] 1[av awj 1(aw+auj
Xy yz X

X = A1y T &= €& + ) &
ox ' Y oy 0z oy OX 2\ 0z oy 2\ ox oz

 Given the three displacements: We have six equations to
easily determine the six strain components.

 Glven the six strains: We have six equations to
determine three displacement components. This Is an
over-determined system and in general will not yield
continuous single-valued displacements unless the strain
components satisfy some additional relations.

 Not all symmetric second-order tensor fields can be

strain fields.
34



Strain Compatibility — Physical Interpretation

' ® | ®

® | @

(a) Discretized Elastic Solid (b) Undeformed Configuration

© G ® || @

® | @ ® @

(c) Deformed Configuration (d) Deformed Configuration
Continuous Displacements Discontinuous Displacements



Compatibility Equations

 Differentiating twice the strain-displacement relationship

L “ik :%(ui’jk' i ); “uii :%(uk,nj +u|,kij);
8ij:E(Ui,j+Uj,i):>< X 1

 The continuity of displacements implies the
Interchangeability of partial derivatives

_0 J’¢€,,,
= i T Enii iy — €k = Sipm S

M 0x 0,

 This strain compatibility condition forms the necessary and
sufficient condition for continuous and single-valuedness
displacements (up to a rigid-body motion) in simply connected
regions.

=0

 For multiply connected regions, strain compatibility is necessary

but no longer sufficient. Additional conditions must be imposed.36



Domain Connectivity




Compatibility Equations
 In 2-D, only 1 out of the

16 equations is
meaningful and
Independent.

* Only 6 out of the 81 are

meaningful

;= ’

0z oy 0yoz
2 2 2

Zl:aiz—i_@ix :28 6‘ZX;
OX 0z OX0Z
3. o%s, O, _ 0%¢,,

oy oxE oxoy
E:ézg 0 88Xy+58y2+85 j

2 2
ﬂzﬁgy O’e 28 £y .

Z ZX

oxoy ozl oz ox oy )

: X — _ yZ 4 X 4+
oyoz  oX ox oy 0z

0%, o Os, og, Og, ;

@. ngy 0 oO¢, Og, Oc,
‘ozox  oy\ oy oz ox )
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Material Time Derivative

* Displacement: u; (x.t) =y (%.t)—x
* \Velocity:

Y, (%,,t) au, (X, t)
Vi (Xk ’t) B 81-. X, =const ) 6t X, =const coorrilgiéligjll'ation Ejiggllfiion
: o, (%, t) &%, (Xt
» Acceleration: a(x,.t)= '%txk ). “'a(t’jk )
X, =const

 With Eulerian description:

f=f(yot)=f (Y (Xt) ). V=V (Y. 1) =V, (Ve (X, 1), 1), 0 = 03 (Vi (X t) 1),
Df _of of oy, _of

Dt ot oy, ot ot

Vi —
Oy
DV, _ &, &V, Oy, _ avk

+v, — - - - g
Dt ot oy, ot atWSpatlal time derivative
4'

Doy — 99; + 0% Y, = 00y +V —

Dt ot oy, ot ot oy,
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Rate of Deformation: Velocity Gradient

* \Velocity gradient is the basic measure of deformation rate.
 Quantifies the relative velocities of two material particles.

dy, du,(x,.t)
) ,t — I — !
nih=5, o |
L=v®V,=1, _
dy;
Oricinal Deformed dv; = V:‘(Y+fi}r)_1’f(?) :id}’j
e corrllgggjratin . configuration J Vi
4 gy, =2 ' ~ Fydx, = dx, = F'd
dv; = Ed% = E(Ejdx}-) = Fjdx; dy; = Fydx; = dx; = Fy dy;
: : ~ av. .
dv, = E;F;}ldyk v®V,=F- F 1 ayj = z‘kajl
J
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Decomposition of Velocity Gradient

o Stretch rate: D=(L+L7)/2 <« Spin rate:W =(L-L7)/2
L=D+W L;=D,+W,

D quantifies the rate of stretchingofa 4 dl

_ . . . —dy=—n+[—
material fiber in the deformed solid: At Y drn+ dt
d d

_ S | T ~1 1 -l . _
Edy_E(F-dx)_F-dx_F-(F dy)=F-F'-dy=L-dy=(D+W)-In

(D+W) - Zn=ﬂn—|—ld—n
dt dt
n-dn/dt=0 n-W-n=0 " “

n-D+W) = n 0t M D=

dt dt dt
* W provides a measure of the average angular velocity of

all material fibers passing through a material point. “



Infinitesimal Strain Rate and Rotation Rate

 For small strains, the rate of deformation (stretching)
tensor can be approximated by the infinitesimal strain rate,
whereas the spin can be approximated by the time
derivative of the infinitesimal rotation tensor:

d d 1 :

EE_EE(H®V+(H®V) ) D or Efj:D{f

iw—il(u@)v (u®V)T):W or wr’j:wfff

dt  dt?2 |
d du,

e The rate of deformation tensor can be related to time

derivatives of other strain measures.
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