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The Form of Internal Forces in Beams

e Internal forces on
cross-sections of
bending beams

m ‘F
A

m
F, m

M : :

A ) The internal forces on cross-section

1Fs m-m can be simplified as shearing

m .

- - forces and bending moments at
M ‘ ; cross-sectional centroid.
( :
I:S
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Symmetric Bending

« Beam: one type of prismatic bars which takes bending as the main
form of deformation.

« Symmetric longitudinal plane: formed by the centroidal axes of
Cross sections.

« Symmetric bending: all external forces & moments acting in the
symmetric longitudinal plane (beam axis being bent from a straight

line to a curve within the symmetric longitudinal plane).
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Types of Beams

) 1 R
Simply supported beam Cantilever beam

P, y 3kN 0.8 kN /m 3 kN
N |
By y vy yvyvy

vE& l
GI [é\ aL

a_“ Ag— L —O —o
Ry ,} Ry . .
- L . LZm : 2m—j; ZmJ

m ' 1m m'lm

Beam with an overhang Compound beam



Types of Supports and Reactions

=

Slotted hole Anchor

Beam bolt

Pole

Base plate

__— Bearing
~< s . plate Beam

Be Concrelt/;' 4 ﬁ:
wall
Fixed support  Hinged or pinned support Roller support
MR FRX 1 .FRX 1
FW FW FW
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Internal Releases

P, P, q P, M, P; 4>
Hy 4 " 2 q
—ip B A v B C HA A 5 <T-1_
‘ 3 mB
R ;—a_» 4—(‘—1 t ‘
A R P (1 —>» 47{')4)»
, B RA a }RB MA r
< L ‘ RA
' |
- L . L >
« Axial release » Shear release  Moment release
Shes lease atx < L
Axial release at x < a p earrelease atx < P; q»
P, P e 12 q)
L2 4 A B C Hy 1A 3
A A ‘ \
A A "ok R R e \ b
e SR B c X
<« (1 le— C —> MA RA \ RI
Ri A Rp A R Moment release at x > a
«—b—> < L ;I

A
~
Y
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Internal Releases

R _—

Pin or —

o — roller




Determinacy of Beams

o Statically determinate beams

—

- Cantilever beam

.
l
- Simply supported beam

L =|

A

- Overhanging beam

o Statically indeterminate beams

- b g
- Simply supported cantilever beam

‘4 ;|
| I

- Fixed beam
16



Sign Convention of Shearing Forces and Bending Moments

 Shearing forces

D o
- Positive: left up / right ‘\ /‘
Fe F

down (clockwise loop)

« Bending moment

- Positive: upper half
under compression /
lower half under tension
(top concave / bottom
convex)
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Sample Problem

 Find the shearing force and bending moment at the left and right

cross-section at point C. F
A l B
« Solution: i ¢ ;
A . | a PP
) T | Fe
1. Reaction forces at the supports F -F = E
A B
2. Internal forces (assuming 2
positive) at the right cross-
section of C. FSCAI
F A )
Foea=Fa=— ‘ ‘M
2 CA
Fa F

Mo, =F,-a=—
CA A 2
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3. Internal forces (assuming lF

positive) at the left cross- A B
section of C. | ¢ :
s ] a z
| |
F
Fscs = —Fg = ) Fecs
Fa MCB( ! "
F
MCB = FB a=—— | I B
2

Note: for a concentrated force acting at C, the change of bending
moment is zero while that of shearing force is equal to the
magnitude of the concentrated force.
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Sample Problem

 Find the shearing force and bending moment at the left and right

cross-section at point C. Fa
A c) B
| ., /
« Solution: -1 | a o
A T *FB
1. Reaction forces at the supports
F
F.=F=—
2
] Fsca
2. Internal force at the right A |
cross-section of C. ‘ v
F FA CA
Feor = F, =—
SCA A 2

MCA:FA°a:%
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3. Internal force at the left A C\Fa B

cross-section of C. /
7 + a 7

F ] |
FSCB ] FB :E Fsce
Fa t B
M =—F a=——2 ( .,
CB B 2 MCB I 1

Note: For a concentrated moment acting at C, the change of shearing
force is zero while that of bending moment is equal to the
magnitude of the concentrated moment.
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Direct Calculation of Shearing Forces

 The shearing forces at a beam cross-section is equal to the net of the
external forces collected from either side of the cross-section.

« Upward net from left portion or downward net from right portion
results in positive shearing force at the cross-section.

« All forces acting on a beam, including the reaction forces at the
supports, must be taken into consideration.
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Sample Problem

« Directly calculate the shearing F, F, F,
force at cross-section C without g
the explicit use of method of A 1 l ‘c l s
section. | ‘ | Wiﬂ
i 7
« Solution: Fa R Fe

- Based on the left portion from cross-section C:
Fse =Fa—R+F-FK

- Based on the right portion from cross-section C:

Foe =—F +ql+F,

Note: in practice, we pick the portion with simpler loadings.
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Direct Calculation of Bending Moments

» The bending moment at a beam cross-section is equal to the net of
the external moments with respect to the cross-section centroid,
collected from either side of the cross-section

 Clockwise net from left portion or counter clockwise net from right
portion results in positive bending moment.

« All forces acting on a beam, including the reaction forces at the
supports, must be taken into consideration.
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Sample Problem

« Directly calculate the bending moment at cross-section C without
the explicit use of method of section.

« Solution: M i
- Based on the left portion from .,

cross-section C F, g

|:B

M. = Fudy—Fd, —M,
- Based on the right portion from cross-section C

M. =—F;d; + F,d,
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Diagram of Shearing Forces & Bending Moments

 Equation of shearing forces and bending moments

- Equation of shearing forces: Fq= F¢(X)
- Equation of bending moments: M = M(x)

- X: denotes the position of cross-section.

 Diagram of shearing forces and bending moments

- Abscissa: cross-section position (x)

- Ordinate: shearing forces (Fs) / bending moments (M)
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Sample Problem

« Draw the diagram of shearing forces and bending moments

RN 3 X2 ]
A cl B
% a .L a W;W
: i ) | Fs
e Solution:
1. Reaction force at the supports: F, = F, =g
2. Equation of internal forces
F "
F(x)=F, = > X, €[0,a) Positive: left & upward

F.(x)=-F = —g X,€[0,a)  Negative: right & upward
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F
. ° 0.5F

= 0.5F
M(X,)=F,X =Tl x, €[0,a) Xy F )
A Cl B
Positive: left & clockwise i i
TS a .L a e
FX Fa T Fg
M(x2)=FBx2=T2 X, €[0,a)

Positive: right & counter clockwise

-
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Sample Problem

« Draw the diagram of shearing forces and bending moments

A ILD EFa |X2 | B
_ F
« Solution: ol ) 1
1. Reaction forces at the supports Fsy 0.5F
F B
F.=F=—
2
2. Equations of internal forces _05Fa
F F
s Ry B
F FX, |

M) =2 Mx) =

M| 0.5F
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Sample Problem
q

Alevvvvvvvvvvv

||

VK
gl /2—X—

—ql/2

M1 ql*/8
3. Diagram of internal forces

Rlililng

* Plot the diagram of shearing
forces and bending moments

e Solution:
1. Reaction forces at the

supports

2. Equation of internal forces
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Relations among Loads, Shearing Forces and Bending Moments

909
q(x) M (X) TH M(X)+dM(x)

A
Sl y

F. (X) F(x) +dF(x)
F (x)+9g(x)dx—F (x)—dF(x)=0

M (x) +dM (x)—%q(x)dzx— M (x)—~F, (X)dx =0
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Relations among Loads, Shearing Forces and Bending Moments

F (X)+q(x)dx—F (x)—dF (x)=0

dFs (x)
dx

= g(X)= Fsz_F31:_[Q(X) dx

M (x) +dM (x)—%q(x)dzx— M (x)—F, (x)dx =0

= FS(X):dNCIbEX)’ MZ—I\/IlzfoS(x)dx
- q(x=

Sign convention of g(x): up positive / down negative.

32



Relations among Loads, Shearing Forces and Bending Moments

« Without distributed load: q(x) =0

q(x):dF;)EX):O =) Fs (x) = const

Note: the slope of the diagram of shearing forces is zero.

dM (x)
dx

=F;(x)=const = M (x)=(const)xx+(const)
Note: the slope of the diagram of bending moments is constant.
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Relations among Loads, Shearing Forces and Bending Moments

« With uniformly distributed load: q(x) = const

dF. ( X
q(x)= ;( ) =const =» F, (x)=(const)x x+(const)
X
Note: the slope of the diagram of shearing forces Is constant.
dM ( x
d)E ) R(x) -

M (x) =(const)x x* +(const ) x x +(const)

Note: M(X) Is a second order polynomial of x.
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Relations among Loads, Shearing Forces and Bending Moments

Loads Diagram of shearing forces Diagram of bending moments
No load F >0 FE <0 F.>0 F <0
(P=0 & q=0) S i >
| |
A 4
Uniformly distributed [T19<0 tttg>0 qg<0 tt1g>0
g=const X Q_l VAN N
YVYVYVYVYVYY | D / \
Concentrated load Discontinuous F; ~./ C R
(P) .. N
. CEWENEN | | Conindous but not
C Y differentiable M
Concentrated moment Discontinuous M
(m)
———— _—’ t“‘c—r—’
C Const
-«
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Sample Problem

« Draw the diagram of shearing forces and bending moments.

o s L
« Solution: Fj? | -T:;%H

F. =— S
-8 TM
5ql
-, -2 T
M/H/H/I/H/ﬁf/i
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Sample Problem

« Draw the diagram of g
shearing forces and '_A\ﬁ l i l l l l i B
bending moments. 7K’
I ‘ I Zf
 Solution: F. E E F,
JE
Fn= 3—ql NS
8
FB Zq—l =31/8 x=1/2 _q_I
5 8

' 9|/28|A3 )



Sample Problem

- Draw the diagram of g ga ga’/2
shearing forces and j
bending moments. 'ﬁ‘)%} l l l l B
« Solution: Fof— @ —==—a —=]=—2a F
F
ga
=08 I
FB =(a B
/{(—qazlz

ga’/2
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Sample Problem

« Draw the diagram of ga’ /2= g
shearing forces and ALty
bending moments. * T * T/‘”’ B
« Solution: ¢ -
olution a - . j}iB
VF,
F,.= q% Fsl da
ga/2
F, = q"y
2 NLLU—qa/2
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Diagram of Internal Forces for Plane Frames

- Plane frames are composed of Rigid

prismatic bars with different joint \

orientations in the same plane.

- Neighboring bars are connected via q
rigid joints

- Internal forces acting on cross-sections
of component bars include axial force,
shearing force, and bending moment.

Bar\ A E
_ 2

_ )
—
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Diagram of Internal Forces for Plane Frames

« Sign convention

- Axial forces: tension positive / compression negative

- Shearing forces and bending moments: the same sign
convention when the plane frame is observed from inside.
« Drawing convention

- Axial forces and shearing forces: draw at either side of
the bar with sign labeled.

- Bending moments: draw at the side under tension without
sign labeled.
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Sample Problem

« Draw the diagram of axial forces, 8 kN
shearing forces and bending moments 1m om
for the plane frame shown below. D c
 Solution: E
1. reaction forces at the supports. % =
dYM,=0= - 1 kN
[

g

(8><1+l><42/2—1><1)

S 1
< B%
F
L 5 |:Ax =
Z:I:XZOZ> /7'6\%
1x4+F, —-1=0=F, =—-3kN F,

>F, =0=F, +F,-8=0
— F,, =3 kN
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2. Diagram of internal forces 8 kN

1) Diagram of axial forces 5 1m | 2m -
BC:F,=-5 kN ' - 3
DC:F,=-1 kN = -
AD : F,=-3 kN Z ! ™

D \ C o 3 B 1 kN
el |1 v
5 KN s% NEEIY > kN
=~
B 3 kN
3 kN
A

S
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2) Diagram of shearing forces 8 kN

BC: horizontal line Im| 2m
. . DI, | C
DC: horizontal line > .
| o —t ' E
DA: oblique straight line =
£ ™
= e
D o 3 kN \—\_Cl c |
kN 5 & A B 1kN
f TN
®
> KN A 3 kN 5 kN
1 kN
B
& 3 kN
3 kN A

S
44



3) Diagram of bending moments 8 kN

BC: obligue straight line (two-point) 1m 2m

CD: oblique straight line (two-point) T = ‘-

DA: parabola (three-point)
3 KNm

1 kN/m

4 m

q:
>

ve)
o1
x =
Z E[

4 KNm

A
STITT777
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Diagram of Internal Forces for Curved Beams

 Draw the diagram of axial forces, shearing forces and
bending moments for the curved beam shown below.

« Solution: Fa M
: C
e Static F% |
equilibrium 0 N

@, B

Fo(0)=Fsind F(0)=—Fcosd M (0)=Fy=FRsind

f\/ﬁ\\f\
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