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Introduction to Torsion

« Turbine exerts torque T on the
shaft

« Shaft transmits the torque to
the generator

« Generator creates an equal and
opposite torque T

 Cross section remains planar

» * Interested In stresses and

‘ strains of circular shafts
subjected to twisting couples
or torques




Introduction to Torsion

Torsional Deformation of
a Circular shatt.

(-
d I
-
Radial lines remain straight Longitudinal lines
during deformation remain straight,

but spiral.

Notice the deformation of the rectangular element

when it is subjected to a torque e 0 6 6
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Examples of Torsion Shafts

Complex crank shaft Tire shift drive Screwdriver



Sign Convention of Torgue

» Sign (Positive) convention (right-hand rule): thumb — cross-
section normal; rest fingers — torque



Torgue Diagram

 Abscissa: cross-section position

 Ordinate: torque

Me




Power & Torgue

 Transformation from electric
power to mechanical power

motor power: P (kW); generated torque: 4™
M, (N m):

n (rpm, revolutions per minute):

M. x27tn = Px1000x 60 = M_ = 1000>00 P _ o549 F
27T n n
* n (rps, revolutions per second):
M, x27n =P x1000 = M_ = 1000P _ 150"
21T N N
» o (rad/s, radian per second):
P

M, x @ = P x1000 = M, =1000—
(£



Internal Torque & Stress - Static Indeterminacy

 Net of the internal shearing stresses is an
Internal torque, equal and opposite to the
applied torque,

T:jdesz(TdA)

 Although the net torque due to the shearing
stresses Is known, the distribution of the
stresses Is not.

« Distribution of shearing stresses Is
statically indeterminate — must consider
shaft deformations.

T

¢ o Unlike the normal stress due to axial loads,
the distribution of shearing stresses due to
torsional loads can not be assumed uniform.
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General Relations Involved in Deformable Solids

Displace

External force
and moments

' Static
Internal forces saquivalen
and moments - ~
3 ' 11




Kinematics

« From observation, the angle of twist of the
shaft is proportional to the applied torque
and to the shaft length.

PocT, @ oc L

» When subjected to torsion, every cross-
section of a circular shaft remains plane
and undistorted.

» Cross-sections for hollow and solid
T circular shafts remain plain and
undistorted because a circular shaft is
axisymmetric.

* Since every cross section of the bar is identical, and since every
Ccross section Is subjected to the same internal torque, we say that

the bar Is In pure torsion. L



Kinematics

 Consider an interior section of the shaft.
As a torsional load is applied, an element
on the interior cylinder deforms into a
rhombus.

» Since the ends of the element remain
planar, the shearing strain may be related
to the angle of twist.

|t follows that

Ly =p¢ or 7=pT¢

 Shearing strain is proportional to the
angle of twist and radius

Y max =% ang y=£7max
L C

13



Hooke’s Law for Shearing Deformation

iy

A cubic element subjected to a shearing stress

will deform into a rhomboid. The
corresponding shear strain is quantified in
terms of the change in angle between the sides,

Txy = f(?xy)

A plot of shearing stress vs. shear strain is
similar the previous plots of normal stress vs.
normal strain except that the strength values
are approximately half. For small strains

z'xy:G'ny Tyz :G7/yz Tox =G 7

where G Is the modulus of rigidity or shear
modulus.

14



A Simple Example of Shearing Deformation

250 A~ SOLUTION:

-

» Determine the average
P angular deformation or
shearing strain of the block.

* Apply Hooke’s law for shearing

A rectangular block of material with stress and strain to find the
modulus of rigidity G = 90 ksi Is corresponding shearing stress.
bonded to two rigid horizontal plates.

The lower plate is fixed, while the « Use the definition of shearing
upper plate is subjected to a horizontal stress to find the force P.

force P. Knowing that the upper plate
moves through 0.04 in. under the action
of the force, determine a) the average
shearing strain in the material, and b)
the force P exerted on the plate.

15



211

il

A

0.04 in.

» Determine the average angular
deformation or shearing strain of the
block.

yxy =0.020rad

* Apply Hooke’s law for shearing
stress and strain to find the
corresponding shearing stress.

ryy = Gyyy = (00x103psif0.020rad) = 1800psi

 Use the definition of shearing stress
to find the force P.

P = 7y A = (1800psi )8in.)(2.5in.) = 36x10°Ib
P =36.0kips

16



Static Equivalency

T

* Multiplying the previous equation by the

§ shear modulus, Gy = gGymax
From Hooke’s Law, 7 =Gy ,s07 = %Tmax
p The shearing stress varies linearly with the

radial position in the section.

 Recall that the sum of the moments from
the internal stress distribution is equal to
the torque on the shaft at the section,

Tmax _Tmax
T=[pr dA= : [ p* dA= :

» The results are known as the elastic
torsion formulas, (I, — Polar moment of

inertia) . _Tc . _Tp

max

Ip

p p
17



Torsional Stress & Angle of Twist

 Torsional section modulus: [m3]:Wp — |p/C-
 Torsional stress

TcC T T T
g, e T _Tp_Tp
W, 1, W, c
« Angle of twist per unit length
1 ¢ 11T T TL
L o oG pGI1, Gl Gl

» Gl : Torsional rigidity [Nem?]

« The equations are limited to bars of circular cross section (either
solid or hollow) that behave in a linearly elastic manner.

18



Nonuniform Torsion of Circular Shafts

 Pure torsion formula refers to torsion of a prismatic bar subjected to
torques acting only at the ends.

« Nonuniform torsion differs from pure torsion in that the bar need not
to be prismatic and the applied torques may act anywhere along the
axis of the bar.

 Bars in nonuniform torsion can be analyzed by applying the formulas
of pure torsion to finite segments of the bar and then adding the
results, or by applying the formulas to differential elements of the bar
and then Integrating.

L |

¢:Z¢IZZGi(i|;)_ b — J- Ao — J-LT(X)dX

Gl, (%) 5




Strength Analysis

» Strength check: 7o = (T/Wp ) __ <|7]

 Cross-section design: Wp 2T / [7]

- Maximum allowable load: T __ SWp[T]
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Stiffness Condition

» Angle of twist per unit length: ¢' =¢/L =T /GI |

- Stiffness condition: ¢, <|¢']
[#']: allowable angle of twist per unit length
[radian/m] or [degrees/m]

v"NC machine: [¢] = 0.15-0.3 degrees/m
v’ Ordinary shaft: [¢'] = 0.5-2.0 degrees/m
v'Shaft of drilling machine: [¢'] = 2.0-4.0 degrees/m

o Stiffness check;
 Cross-section design;
 Allowable load.

21



Strain Energy

e Strain energy and work in pure torsion

1 T?L Gl TL
2 ¢ 2Gl ¢ (¢ Glpj

p

 Nonuniform torsion

f\ U = Zu TL

Prismatic bar in pure shear

Torque
2G, (1,),
Lpc—y LCD T
t
%}—){ TA %—
Il ] B
| dx X | dx
L | L | 0
Angle of rotation
[T ()] dx )

U=[rdu=[ 2G1_ (x) Torque-rotation diagram
22



Strain Energy Density

» Consider a differential cube of sideh = — T
subjected to shearing stresses zon its \ ‘ /\
sides Y

1 1 1 '
U=W==VSs==(rh*)(yh)==2yh® —F—= )
2 2( )( ) 2 PP /
u:%:ify:EGyzzirz (a) (b)
h® 2 2 2G ) S
. . . V

» Total strain energy in torsion — y—

TA ! TB 14 [V ’}/7 /

<— - N 4

A |
‘l “_dx 7 v
(c) (d)

0= [ uav — [ [ ucAdx~ J. [ aaox

2
1 (T T?2 T ?dx
:UAze[ If} dAdx = LZGlé{jAPZdA}dX:jLZGIp
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Polar Moment of Inertia & Section Modulus

« Solid circular shafts

dA=2npdp
2
l, = pdA
d d*
(252 20d p = 2
| 7P 2mpdp =
|, @wd* 2 ad®

— X — = ——
" r 32 d 16

24



Polar Moment of Inertia & Section Modulus

e Hollow circular shafts

I, = | p*dA

= I;pz 2mpd p

(o)
D* |
:n32 (1—a4) Wp:D_/z

25



Polar Moment of Inertia & Section Modulus

 Thin-walled tubes: (6 << )

D=2r,+6, d=2r,—-0, A=2nr,d

1, = [ p?-dAx [ dAx 2nr3s

|
W =-F z27tr025

P

Iy

 Torsional stress in thin-walled tubes can be simplified to

T T
T =—= >
W, 2zr150
T

T=|r(zdA)=rz|dA=r2a0 = 7=

R R

26



Sample Problem

SOLUTION:

0.9m

« Cut sections through shafts AB
and BC and perform static
equilibrium analysis to find
torque loadings

 Apply elastic torsion formulas
to find minimum and
maximum stress on shaft BC

 Given allowable shearing

Shaft BC is hollow with inner and outer diameters  stress and applied torque,
of 90 mm and 120 mm, respectively. Shafts AB invert the elastic torsion
and CD are solid of diameter d. For the loading formula to find the required
shown, determine (a) the minimum and maximum  diameter

shearing stress in shaft BC, (b) the required

diameter d of shafts AB and CD if the allowable

shearing stress in these shafts is 65 MPa. 57



SOLUTION:

 Cut sections through shafts AB and BC and perform static equilibrium analysis to
find torque loadings

Ty, =6kN.m Ty=6kN.m

D> T=0=(6kN-m)-T, > T =0=(6kN-m)+(14kN-m)—T,.
Ty =6kN-m=Tg, T.. =20kN-m

28



» Apply elastic torsion formulas to  Given allowable shearing stress and

find minimum and maximum applied torque, invert the elastic torsion
stress on shaft BC formula to find the required diameter
e 6 kN «m

- \
ol 1] ™ ¢y = 45 mm
2 1
/ \
/ /Tl ]lrﬂ/ -
\ II
- - ,«"_—I" | /

\ O\ ~. /™ c9g=60mm

\ P |
\\i"j:j"ii// A 6 kN - m
™
I, =Z(ci—¢!)=Z| (0.060)" ~(0.045)" ‘~.
2 2 . 4
=13.92x10°m* B
T,.C, (20kN-m)(0.060m)
Tmax = Z-2 = = -6 .4
| 13.92x10°m .
p Tmax:E: Tc 65|\/|Pa=6kN m
=86.2MPa |, zc zc’
Tmin _ @ Tmin___ 4omm ¢=38.9x10°m




Sample Problem

 The horizontal shaft AD is attached
to a fixed base at D and Is subjected KL
to the torques shown. A 44-mm- | 60 mm
diameter hole has been drilled into ( - / \/
portion CD of the shaft. Knowing S 44 mm ,\W N-m

that the entire shaft is made of steel
for which G = 77 GPa, determine the
angle of twist at end A.

\  \
/\\ ( \\\ 250 N - m
C

e In. o

\
SOLUTION 0.6m B Z
\ ()[
¢:£Z TABI—AB _l_TBCLBC _|_TCDLCD) ”)m 30 mm
G | IpAB IpBC IpCD 0.4m
1 5 (250)(0.4)  (2250)(0.2) (2250
° ~(0015)"  7(0.03)"  7(0.030)" ~(0.022)’

=0.01634 +0.00459 +0.01939

=0.0403 rad = 0.0403(360/27) = 2.31° 30



Sample Problem

36 in. D

03 B
= 0.875 in./
Two solid steel shafts are connected by
gears. Knowing that for each shaft G =
11.2 x 108 psi and that the allowable
shearing stress is 8 ksi, determine (a) the
largest torque T, that may be applied to the
end of shaft AB, (b) the corresponding angle
through which end A of shaft AB rotates.

SOLUTION:
« Apply a static equilibrium

analysis on the two shafts to find
a relationship between T and
TO

Apply a kinematic analysis to
relate the angular rotations of the
gears

Find the maximum allowable
torgue on each shaft — choose the
smallest

Find the corresponding angle of
twist for each shaft and the net
angular rotation of end A

31



» Apply a static equilibrium analysis on « Apply a kinematic analysis to relate
the two shafts to find a relationship the angular rotations of the gears
between Ty and T,

Tep d’C
| : Tap =Ty Cﬂ_“
fﬂ \ | I/B'\,- | /\ \ T &
] e W € %A:
e =i g = 0575 . re = 245in. - rp = 0575 n.

> Mg =0=F(0.875in.)-T, rgdg = e de

M~ =0=F(2.45in.)-T f 2.45In
2.Mc ( )-Teo ¢B:£¢C20875. he
TCD = 28TO I's . In

¢ = 2.8¢¢

32



* Find the T, for the maximum
allowable torque on each shaft

¢ =037

r=1e® gooopsi
IpAB

T =663Ib-in.

r=leoC gog0psi
pCD

T, =561Ib-in.

,l \B = Iy

~ T,(0.375in.)
z(0.375in.)’

2.8T,(0.5in.)

z(0.5in.)*

 Find the corresponding angle of twist

for each shaft and the net angular
rotation of end A

T,sL (561lb-in.)(24in.)

P =G o B £(0375in.)* (11.2x10°psi
=0.387rad = 2.22°
T,L  28(561lb-in.)(24in)
Peip = -

Gleo  £(0.5in.)" (11.2x10°psi)
=0.514rad = 2.95°

ds = 2.8¢, = 2.8(2.95°) =8.26°

By = Gy + Py =8.26° +2.22° =10.48°

33



Sample Problem

» Determine the angle of twist
at end A of the shaft.

e Solution

X
d, =dA+I(dB—dA)

d’ *
|, == (dAJ(dB—dA))

32 32 L
L Tdx
"=l Gl,,
oL Tdx
o T X )
G3_2(dA+E(dB-dA)
32T L 1 1
G 3(dB_dA) df\ g/

P AL 1 1
* 372G (dg—-d,)\ d} d]

34



Sample Problem

« Determine the angle of
B twist at cross-section B of
the shaft.

e Solution

j—dx

2
t_xdx_ tL

‘Gl 2GI

35



Sample Problem

 Given: n =500 rpm, input gear A (P, =400 kW), output gears C and
B (P,=160 kW, P, =240 kW), [z] = 70 MPa, [¢'] = 1 degree/m, G
= 80 GPa. Find (1) d; and d,; (2) d if d,- = dg IS required; (3) How
to arrange the input and output gears to make the transmission more

reasonable?

/ dl C /d2
e
el \ Mez e3

< @

36



« Solution:
1. Torgque diagram

M., = 95491 = 9549 x 200
N 500
=7640 N-m

160

M,, ==——M,, =3060 N-m
400

240

M, =M, =4580 N-m
400

C /d2

@ //
A(
M |

el

(

< @

I\/Ie2

e3

(=)

/640N -m

4580N-m

37



2. Find d,

* From strength condition:
T
T max 7'Cd3/16

3
—d > 16T \/16><76406 829510
[ 7] tx 70x10

 From stiffness condition:

I

32

4 > 4[32T <180 _ \//32><7640><18O
F T\ G x[¢]

« Take d; = 86.4 mm

80x10° x 7t x1

m =82.2 mm

—=86.4%x10"° m =86.4 mm

38



3. Find d,
 From strength condition:

3 3
d, > [X°L :\/ 1624580 _ 59 3x102m = 69.3mm
7| 7] Ttx70x10

 From stiffness condition:

4 > ‘(32T =180 _ ‘\‘/32x4580><180
2 Gn’ x[¢'] 80x10° x1t° x1

« Take d, = 76mm

=76x1073m =76mm

4. 1f d = d, = d, Is required, take the maximum value:
d =d, =86.4mm

39



5. Rearrangement of gears to make the transmission more efficient.
Put the Input gear in between two output gears.

/4h pc /% (-)
Alll— — B 4580N-m
M., WM., Mes 7640N-m
YL - (-] ]3060N-m
[ :
M. WM, Mes 4580 N-m )

« Smaller maximum load carried by the system (4580/7640=60%)

40




Theorem of Conjugate Shearing Stress

 Torque applied to shaft produces
shearing stresses on the faces
perpendicular to the axis.

Conditions of equilibrium require the
existence of equal stresses on the faces
of the two planes containing the axis
of the shaft.

 The existence of the axial shear is
demonstrated by considering a shaft
made up of axial slats.

 The slats slide with respect to each
other when equal and opposite torques
are applied to the ends of the shaft.

41



Stresses on Obligue Cross Sections

| (i

| a

Elements with faces parallel and perpendicular
to the shaft axis are subjected to shearing
stresses only. Normal stresses, shearing stresses
or a combination of both may be found for other
orientations.

Consider an element at 45° to the shaft axis,
F =2(7,m A )C0845° =7, AN2
F o ZnaAN2

6450 A Ab \/E — “max

Element a is in pure shear.

Element c is subjected to a tensile stress on two
faces and compressive stress on the other two.

Note that all stresses for elements a and ¢ have
the same magnitude

What about the normal and shearing stress for

an arbitrarily oriented element?
42



Faillure Modes of Torsional Shafts

T * Ductile materials generally fail in
| shear. Brittle materials are weaker
Ll @ | in tension than shear.

» When subjected to torsion, a ductile
specimen breaks along a plane of
maximum shear, 1.e., a plane
perpendicular to the shaft axis.

» When subjected to torsion, a brittle
specimen breaks along planes
perpendicular to the direction in
which tension is a maximum, i.e.,
along surfaces at 45° to the shaft
axis.

43



Stress Concentrations

« The derivation of the torsion formula assumed a circular shaft with uniform cross-
section loaded through rigid end plates.

« The use of flange couplings, gears and pulleys attached to shafts by keys in
keyways, and cross-section discontinuities can cause stress concentrations

« Experimental determined concentration factors are applied as 7, =K (Tc/ | p)

1.8

-

A

Il

=

-

—

—
| ‘.
\";
1k

15 .
\\(f-g - 1.666
K 14 \ ‘
\ \ ’_Q _ 2
1.3 \ < ! D_s5
N \ d =
12 SRS
\\\
1.1
1.0

0 005 010 0.15 020 0.25 0.30
r/d
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Torsion of Noncircular Members

e Planar cross-sections of noncircular

e Previous torsion formulas are valid for
| . axisymmetric or circular shafts
= 7 = Y
]

T sll .
. shafts do not remain planar and stress
. and strain distribution do not vary
- < linearly
» The mathematical theory of elasticity
N for straight bars with a uniform
o/b ] ] rectangular cross section predicts that
1 2 R .
” 208 os  [S:P. Timoshenko and J.N. Goodier,
2 0219 1661 Theory of Elasticity, 3rd ed., McGraw-
X )2 1955 . .
2.0 0.246 0.229 Hill, New York, 1969, Article 109]:
2.5 (0.258 (0.249
3.0 0.267 0.263 T TL
4.0 0.282 0.251 T oo = > ¢ = -
5.0 (.291 0.291
10.0 0.312 0.312 Clab CZab G

% 0.333 (0.333 45



Membrane Analogy

. Tangent of
Rectangular frame

 The determination of the deformation of
\ Membrane /- Forsnil— the membrane depends upon the solution
\ O\ /L / of the same partial differential equation
FS - S U S !
f'}f/ A / as the determination of the shearing
P ] stresses in the bar.

max. slope

 The shearing stress at Q will have the
N B same direction as the horizontal tangent
to the membrane at Q’, and 1ts

a - magnitude will be proportional to the
maximum slope of the membrane at Q’.

» The applied torque will be proportional
to the volume between the membrane
and the plane of the fixed frame.

46



Torsion of Thin-Walled Open Shafts

Tmax =
0.333ab’

Using the membrane analogy to help
us visualize the shearing stresses, we
note that, If the same torque is
applied to each member, the same
volume will be located under each
membrane, and the maximum slope
will be about the same In each case.

Thus, for a thin-walled member of
uniform thickness and arbitrary
shape, the shearing stress is the same
as for a rectangular bar with a very
large value of a/b and may be

determined from

T TL

~ 0.333ab°G
47
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Torsion of Thin-Walled Hollow Shafts

« Summing forces in the x-direction on AB

Ny~
™ o s > Fy =0=17(taAX)-75(tgAX)
‘ \\ 3 = »ELK
-l s/ zi:‘f\ﬁ at o= 7gtg= 7t = q = shear flow
"IN+ Shearing stress varies inversely with t.
Ax

t « Compute the shaft torque from the
A Integral of the moments due to shearing
stress

dM, = pdF = pr(tds)=q(pds)=2qdA
T=¢pdM,=$2qdA=20A =[r=T/2A

,_ \>\ /' where A s the area bounded by the
4 center line of the wall cross section.
48



Torsion of Thin-Walled Hollow Shafts

« Strain energy density

2_2 T2
- T=T/2A mU=—=—F—
1 54 2G 8Gt A
< B// \ « Strain energy and work done by the
- * \\_// torque
U=[ fu(tds)dx= <j‘> _(tds )dx
: T ds ds
\/\A - Jo 8GA? @Tj = 8GA’ (98 j
N « Angle of twist by energy method
1 TL ¢ds
U=-T = | =
2 ? ? AGA? Cﬁ

49



Sample Problem

-  4in.— o

|

T

=—0.160 in.

0.160 in.—| |=—

}
(a)
4 1n.
|
r
=—(.120 in.
95
251n 0.200 in. —
| j
C |

Extruded aluminum tubing with a rectangular
cross-section has a torque loading of 24 kip-in.
Determine the shearing stress in each of the
four walls with (a) uniform wall thickness of
0.16 in. and wall thicknesses of (b) 0.12 in. on
AB and CD and 0.2 in. on CD and BD.

SOLUTION:

« Determine the shear flow through the
tubing walls

 Find the corresponding shearing stress
with each wall thickness

50



A . SOLUTION:

A }
| ! | « Determine the shear flow
— =—10.160 in. 3.84 in.
2.51n. . A B T
0.160 in.—| |=— PR P L 0 q=—
i i 2A
¢ T D 934 | (= 0160 i il ___22KPn.
(@) i = 0.160 in. i 2(3.84-|n.)(2.34|n.)
N | _1.3354P
4 in. C T D In.
4 t ¥« Find the corresponding shearing stress with each
e olo0im wall thickness
2.5 in. 0900in | (@) with a uniform wall thickness,
| | 1.335Kip/in. :
, S—— f:ﬂ: P/ =8.34ksi
C ! D t 0.160in.
(b) _ _ :
(b) with a variable wall thickness
1.335Kkip/in. : 1.335kip/in. :
Ton = Tpr = =11.13ksl, 7, =7~ = _ = 6.68ksi
A 0.120in. 0P 0.200in.

o1
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