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• Introduction to Torsion（扭转简介）

• Examples of Torsion Shafts（扭转轴示例）
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• Nonuniform Torsion of Circular Shafts（圆轴的非均匀扭转）

• Strength & Stiffness Analysis（强度和刚度条件）

• Strain Energy and its Density（扭转应变能与应变能密度）

• Polar Moments of Inertia & Section Modulus（圆截面的极惯性矩
与扭转截面系数）

• Theorem of Conjugate Shearing Stress（切应力互等定理）

• Stresses on Oblique Cross Sections（扭转轴斜截面上的应力）

• Failure Modes of Torsional Shafts（扭转轴的失效模式）

• Stress Concentrations（扭转轴的应力集中）

• Torsion of Noncircular Members（非圆截面杆的扭转）

• Membrane Analogy（薄膜比拟）
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• Interested in stresses and 

strains of circular shafts 

subjected to twisting couples 

or torques

• Generator creates an equal and 

opposite torque T

• Cross section remains planar

• Turbine exerts torque T on the 

shaft

Introduction to Torsion

• Shaft transmits the torque to 

the generator
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Introduction to Torsion
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Ship drive shaft

Complex crank shaft

Automotive power train shaft

Screwdriver

Power generation shaft

Tire shift drive

Examples of Torsion Shafts



• Sign (Positive) convention (right-hand rule): thumb – cross-

section normal; rest fingers – torque

Sign Convention of Torque
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• Abscissa: cross-section position

• Ordinate: torque

Torque Diagram 
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• Transformation from electric 

power to mechanical power 

Power & Torque
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• motor power: P (kW); generated torque: 

Me (N·m):

• n (rpm, revolutions per minute):
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• n (rps, revolutions per second):

• ω (rad/s, radian per second):



   dAdFT 

• Net of the internal shearing stresses is an 

internal torque, equal and opposite to the 

applied torque,

• Although the net torque due to the shearing 

stresses is known, the distribution of the 

stresses is not.

• Unlike the normal stress due to axial loads, 

the distribution of shearing stresses due to 

torsional loads can not be assumed uniform.

• Distribution of shearing stresses is 

statically indeterminate – must consider 

shaft deformations.

Internal Torque & Stress - Static Indeterminacy 
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General Relations Involved in Deformable Solids
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• From observation, the angle of twist of the 

shaft is proportional to the applied torque 

and to the shaft length.

LT   ,
• When subjected to torsion, every cross-

section of a circular shaft remains plane 

and undistorted.

• Cross-sections for hollow and solid 

circular shafts remain plain and 

undistorted because a circular shaft is 

axisymmetric.

Kinematics
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• Since every cross section of the bar is identical, and since every 

cross section is subjected to the same internal torque, we say that 

the bar is in pure torsion.



• Consider an interior section of the shaft.  

As a torsional load is applied, an element 

on the interior cylinder deforms into a 

rhombus.  

• Shearing strain is proportional to the 

angle of twist and radius

max max   and   
c

L c

 
   

L
L


  or      

• It follows that

• Since the ends of the element remain 

planar, the shearing strain may be related 

to the angle of twist.
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• A cubic element subjected to a shearing stress 

will deform into a rhomboid. The 

corresponding shear strain is quantified in 

terms of the change in angle between the sides,

 xyxy f  

• A plot of shearing stress vs. shear strain is 

similar the previous plots of normal stress vs. 

normal strain except that the strength values 

are approximately half.  For small strains

zxzxyzyzxyxy GGG  

where G is the modulus of rigidity or shear 

modulus.

Hooke’s Law for Shearing Deformation
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A Simple Example of Shearing Deformation

A rectangular block of material with 

modulus of rigidity G = 90 ksi is 

bonded to two rigid horizontal plates.  

The lower plate is fixed, while the 

upper plate is subjected to a horizontal 

force P.  Knowing that the upper plate 

moves through 0.04 in. under the action 

of the force, determine a) the average 

shearing strain in the material, and b) 

the force P exerted on the plate.

SOLUTION:

• Determine the average 

angular deformation or 

shearing strain of the block.

• Use the definition of shearing 

stress to find the force P.

• Apply Hooke’s law for shearing 

stress and strain to find the 

corresponding shearing stress.
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• Determine the average angular 

deformation or shearing strain of the 

block.

rad020.0
in.2

in.04.0
tan  xyxyxy 

• Apply Hooke’s law for shearing 

stress and strain to find the 

corresponding shearing stress.

   psi1800rad020.0psi1090 3  xyxy G

• Use the definition of shearing stress 

to find the force P.

    lb1036in.5.2in.8psi1800 3 AP xy

kips0.36P
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2max max
pT dA dA I

c c

 
    

• Recall that the sum of the moments from 

the internal stress distribution is equal to 

the torque on the shaft at the section,

max    and   
p p

Tc T

I I


  

• The results are known as the elastic 

torsion formulas, (Ip – Polar moment of 

inertia)

• Multiplying the previous equation by the 

shear modulus, max


 G
c

G 

max



c

From Hooke’s Law,  G , so

The shearing stress varies linearly with the 

radial position in the section.

Static Equivalency
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.p PW I c

max ,
p p p p

Tc T T T

I W I W c

 
     

• Torsional section modulus: [m3]:

1 1 1
        

p p p

T T TL
L

L G G I GI GI

   
  

  
       

• Angle of twist per unit length

• Torsional stress

• GIp: Torsional rigidity [N•m2]

Torsional Stress & Angle of Twist
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• The equations are limited to bars of circular cross section (either 

solid or hollow) that behave in a linearly elastic manner.



• Pure torsion formula refers to torsion of a prismatic bar subjected to 

torques acting only at the ends.

• Nonuniform torsion differs from pure torsion in that the bar need not 

to be prismatic and the applied torques may act anywhere along the 

axis of the bar.

• Bars in nonuniform torsion can be analyzed by applying the formulas 

of pure torsion to finite segments of the bar and then adding the 

results, or by applying the formulas to differential elements of the bar 

and then integrating.

Nonuniform Torsion of Circular Shafts

 

 0 0

L L

p

T x dx
d

GI x
    

i i
i

i i i p i

T L

G I
   
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   max maxPτ T W τ • Strength check:

• Cross-section design:

• Maximum allowable load:

max [ ]pW T 

][max pWT 

Strength Analysis
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• Stiffness condition:

pL T GI   • Angle of twist per unit length:

[]: allowable angle of twist per unit length

[radian/m] or [degrees/m]

NC machine: [] = 0.15-0.3 degrees/m

Ordinary shaft: [] = 0.5-2.0 degrees/m

Shaft of drilling machine: [] = 2.0-4.0 degrees/m

• Stiffness check;

• Cross-section design;

• Allowable load.

 max  

Stiffness Condition
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Strain Energy

Torque-rotation diagram

Prismatic bar in pure shear

• Strain energy and work in pure torsion

2
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  

 
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



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 

2

0 0 2

L L

p
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    

 
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i
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• Nonuniform torsion
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Strain Energy Density

• Consider a differential cube of side h

subjected to shearing stresses  on its 

sides
  2 3

2 2

3

1 1 1

2 2 2

1 1 1

2 2 2

U W V h h h

U
u G

h G

   

  

   

   

• Total strain energy in torsion

 

2

2
2 2

2

2

2

1

2 2 2

V L A L A

L A L A L
p p p

U udV udAdx dAdx
G

T T T dx
dAdx dA dx

G I GI GI






  

 
    

 

    

    
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• Solid circular shafts

2

2

4
2

0

π
2π

32

d

p
A

I dA

d
d



  



  





4 3π 2 π

32 16

p

p

I d d
W

r d
   

2πdA d 

d

ρ

dρ τ

Polar Moment of Inertia & Section Modulus
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• Hollow circular shafts

dAI
A

p 
2

 

2

3
4π

1
16

p

p
D

I
W

D




 

2

2

2 2π
D

d
d   

 4 4π

32
D d 

 
4

4π
1

32

D

d

D





 

 
 

 

d

ρ

dρ

D

τ
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• Thin-walled tubes: (δ << r0)

0 0 02 ,    2 ,    2πD r d r A r      

2 2

2 2

2 2 3

0 0

2

0

0

2π

2π

D D

d dp

p

p

I dA r dA r

I
W r

r

 



   

 

 

d

r0

δ

D
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  0 0 0 2

0

2
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r

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   

 

 

• Torsional stress in thin-walled tubes can be simplified to

Polar Moment of Inertia & Section Modulus



Shaft BC is hollow with inner and outer diameters 

of 90 mm and 120 mm, respectively.  Shafts AB

and CD are solid of diameter d.  For the loading 

shown, determine (a) the minimum and maximum 

shearing stress in shaft BC, (b) the required 

diameter d of shafts AB and CD if the allowable 

shearing stress in these shafts is 65 MPa.

SOLUTION:

• Cut sections through shafts AB

and BC and perform static 

equilibrium analysis to find 

torque loadings

• Given allowable shearing 

stress and applied torque, 

invert the elastic torsion 

formula to find the required 

diameter

• Apply elastic torsion formulas 

to find minimum and 

maximum stress on shaft BC

Sample Problem
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SOLUTION:

• Cut sections through shafts AB and BC and perform static equilibrium analysis to 

find torque loadings

 0 6kN m

6kN m

AB

AB CD

T T

T T

   

  


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   0 6kN m 14kN m

20kN m

BC

BC

T T

T

     

 





• Apply elastic torsion formulas to 

find minimum and maximum 

stress on shaft BC

     
4 44 4

2 1

6 4

0.060 0.045
2 2

13.92 10 m

pI c c
 



    
 

 

  2
max 2 6 4

20kN m 0.060m

13.92 10 m

86.2MPa

BC

p

T c

I
 




  





MPa7.64

mm60

mm45

MPa2.86

min

min

2

1

max

min













c

c

• Given allowable shearing stress and 

applied torque, invert the elastic torsion 

formula to find the required diameter

max 4 3

2 2

3

6kN m
65

38.9 10 m

2 77.8mm

p

Tc Tc
MPa

I c c

c

d c

 





  

 

 
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Sample Problem

• The horizontal shaft AD is attached 

to a fixed base at D and is subjected 

to the torques shown. A 44-mm-

diameter hole has been drilled into 

portion CD of the shaft. Knowing 

that the entire shaft is made of steel 

for which G = 77 GPa, determine the 

angle of twist at end A.

SOLUTION:

  

 

  

 

  

   

 

4 4 4 4

0

1

250 0.4 2250 0.2 2250 0.61

0.015 0.03 0.030 0.022
2 2 2

0.01634 0.00459 0.01939

0.0403 rad 0.0403 360 2 2.31

BC BC CD CDAB AB

i pAB pBC pCD

i

T L T LT L

G I I I

G



  



 
    

 

 
 

   
  
  

  

  




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Two solid steel shafts are connected by 

gears.  Knowing that for each shaft G = 

11.2 x 106 psi and that the allowable 

shearing stress is 8 ksi, determine (a) the 

largest torque T0 that may be applied to the 

end of shaft AB, (b) the corresponding angle 

through which end A of shaft AB rotates.

SOLUTION:

• Apply a static equilibrium 

analysis on the two shafts to find 

a relationship between TCD and 

T0

• Find the corresponding angle of 

twist for each shaft and the net 

angular rotation of end A

• Find the maximum allowable 

torque on each shaft – choose the 

smallest

• Apply a kinematic analysis to 

relate the angular rotations of the 

gears

Sample Problem

31



• Apply a static equilibrium analysis on 

the two shafts to find a relationship 

between TCD and T0

 

 

0

0

8.2

in.45.20

in.875.00

TT

TFM

TFM

CD

CDC

B











• Apply a kinematic analysis to relate 

the angular rotations of the gears

CB

CC
B

C
B

CCBB

r

r

rr







8.2

in.875.0

in.45.2






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• Find the T0 for the maximum 

allowable torque on each shaft

 

 

 

 

0

max 4

2

0

0

max 4

2

0

0.375in.
8000psi

0.375in.

663lb in.

2.8 0.5in.
8000psi

0.5in.

561lb in.

AB

pAB

CD

pCD

TT c

I

T

TT c

I

T









 

 

 

 

• Find the corresponding angle of twist 

for each shaft and the net angular 

rotation of end A

  

   

  

   

 

/ 4 6

2

o

/ 4 6

2

o

o o

o o o

/

561lb in. 24 .

0.375in. 11.2 10 psi

0.387 rad 2.22

2.8 561lb in. 24 .

0.5in. 11.2 10 psi

0.514rad 2.95

2.8 2.8 2.95 8.26

8.26 2.22 10.48

AB
A B

pAB

CD
C D

pCD

B C

A B A B

inT L

GI

inT L

GI









 

  


 



 


 



 

  

    
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Sample Problem

• Determine the angle of twist 

at end A of the shaft.

 

 

 

 

 

44

0

40

3 3

3 3

32 32

32

32 1 1

3

32 1 1

3

x A B A

x
px A B A

L

A

px

L

A B A

B A A B

A

B A A B

x
d d d d

L

d x
I d d d

L

Tdx

GI

Tdx

x
G d d d

L

T L

G d d d d

TL

G d d d d

 










  

 
    

 




 

  
 

 
  

  

 
  

  





• Solution
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• Determine the angle of 

twist at cross-section B of 

the shaft.

2

0 0
2

L L

B

p p p

T tx tL
dx dx

GI GI GI
    

Sample Problem

• Solution
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• Given: n = 500 rpm, input gear A (P1 = 400 kW), output gears C and 

B (P2 = 160 kW, P3 = 240 kW), [τ] = 70 MPa, [′] = 1 degree/m, G

= 80 GPa. Find (1) d1 and d2; (2) d if dAC = dBC is required; (3) How 

to arrange the input and output gears to make the transmission more 

reasonable?

1eM
A B

C

2eM 3eM

1d 2d

Sample Problem
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1
1

400
9549 9549

500
7640 N m

e

P
M

n
  

 

2 1

160
3060 N m

400
e eM M  

3 1

240
4580 N m

400
e eM M  

• Solution:

mN7640 

mN4580 
 

1eM
A B

C

2eM 3eM

1d 2d
1. Torque diagram
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• From stiffness condition:

2. Find d1

• From strength condition:

 max 3

1

33
3

1 6

π 16

16 16 7640
82.2 10 m 82.2 mm

π[ ] π 70 10

T

d

T
d

 





 


     

 

 max 4

1

44
3

1 2 9 2

180

π π
32

32 180 32 7640 180
86.4 10 m 86.4 mm

π [ ] 80 10 π 1

T

d
G

T
d

G

 





   

  
     

   



• Take d1 = 86.4 mm
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• From stiffness condition:

3. Find d2

• From strength condition:

33
3

2 6

16 16 4580
69.3 10 m 69.3mm

π[ ] π 70 10

T
d




    

 

44
3

2 2 9 2

32 180 32 4580 180
76 10 m 76mm

π [ ] 80 10 π 1

T
d

G 

  
    

   

4. If d = d1 = d2 is required, take the maximum value:

1 86.4mmd d 

• Take d2 = 76mm
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5. Rearrangement of gears to make the transmission more efficient. 

Put the input gear in between two output gears.

1eM
A B

C

2eM 3eM

1d 2d

mN7640 

mN4580 

 

2eM
C B

A

1eM 3eM

1d 2d

• Smaller maximum load carried by the system (4580/7640=60%)

3060 N m

4580 N m
 

 
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• Torque applied to shaft produces 

shearing stresses on the faces 

perpendicular to the axis.

• Conditions of equilibrium require the 

existence of equal stresses on the faces 

of the two planes containing the axis 

of the shaft.

• The slats slide with respect to each 

other when equal and opposite torques 

are applied to the ends of the shaft.

• The existence of the axial shear is 

demonstrated by considering a shaft 

made up of axial slats.

Theorem of Conjugate Shearing Stress
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• Note that all stresses for elements a and c have 

the same magnitude

• Element c is subjected to a tensile stress on two 

faces and compressive stress on the other two.  

• Elements with faces parallel and perpendicular 

to the shaft axis are subjected to shearing 

stresses only.  Normal stresses, shearing stresses 

or a combination of both may be found for other 

orientations.

 

o

max 0 max 0

max 0
max45

0

2 cos 45 2

2

2

F A A

AF

A A

 


 

  

  

• Consider an element at 450 to the shaft axis,

• Element a is in pure shear.  

• What about the normal and shearing stress for 

an arbitrarily oriented element?

Stresses on Oblique Cross Sections
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• Ductile materials generally fail in 

shear.  Brittle materials are weaker 

in tension than shear. 

• When subjected to torsion, a ductile 

specimen breaks along a plane of 

maximum shear, i.e., a plane 

perpendicular to the shaft axis.

• When subjected to torsion, a brittle 

specimen breaks along planes 

perpendicular to the direction in 

which tension is a maximum, i.e., 

along surfaces at 45o to the shaft 

axis.

Failure Modes of Torsional Shafts
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• The derivation of the torsion formula assumed a circular shaft with uniform cross-

section loaded through rigid end plates.

 max pK Tc I • Experimental determined concentration factors are applied as

• The use of flange couplings, gears and pulleys attached to shafts by keys in 

keyways, and cross-section discontinuities can cause stress concentrations

Stress Concentrations
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Torsion of Noncircular Members

max 2 3

1 2

T TL

c ab c ab G
  

• The mathematical theory of elasticity 

for straight bars with a uniform 

rectangular cross section predicts that 

[S.P. Timoshenko and J.N. Goodier, 

Theory of Elasticity, 3rd ed., McGraw-

Hill, New York, 1969, Article 109]:

• Previous torsion formulas are valid for 

axisymmetric or circular shafts 

• Planar cross-sections of noncircular 

shafts do not remain planar and stress 

and strain distribution do not vary 

linearly
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• The determination of the deformation of 

the membrane depends upon the solution 

of the same partial differential equation 

as the determination of the shearing 

stresses in the bar.

Membrane Analogy

46

• The shearing stress at Q will have the 

same direction as the horizontal tangent 

to the membrane at Q’, and its 

magnitude will be proportional to the 

maximum slope of the membrane at Q’.

• The applied torque will be proportional 

to the volume between the membrane 

and the plane of the fixed frame.



• Using the membrane analogy to help 

us visualize the shearing stresses, we 

note that, if the same torque is 

applied to each member, the same 

volume will be located under each 

membrane, and the maximum slope 

will be about the same in each case.

max 2 30.333 0.333

T TL

ab ab G
  

Torsion of Thin-Walled Open Shafts

47

• Thus, for a thin-walled member of 

uniform thickness and arbitrary 

shape, the shearing stress is the same 

as for a rectangular bar with a very 

large value of a/b and may be 

determined from



Torsion of Thin-Walled Hollow Shafts

• Summing forces in the x-direction on AB

   

flowshear 

0





qttt

xtxtF

BBAA

BBAAx





   0

0

2

2 2    2

dM p dF p t ds q pds q dA

T dM q dA qA T tA





   

      

• Compute the shaft torque from the 

integral of the moments due to shearing 

stress

48

• Shearing stress varies inversely with t.

where A is the area bounded by the 

center line of the wall cross section.

dA

A
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Torsion of Thin-Walled Hollow Shafts

• Strain energy density
2 2

2 2
2   

2 8

T
T tA u

G Gt A


    

A

• Angle of twist by energy method

• Strain energy and work done by the 

torque

   
2

2 20 0

2 2

2 20

8

8 8

L L

L

T
U u tds dx tds dx

Gt A

T ds T L ds
dx

GA t GA t

 

   
    

   

   

  

 

 

2

1
    

2 4

TL ds
U T

GA t
    



Extruded aluminum tubing with a rectangular 

cross-section has a torque loading of 24 kip-in.  

Determine the shearing stress in each of the 

four walls with (a) uniform wall thickness of 

0.16 in. and wall thicknesses of (b) 0.12 in. on 

AB and CD and 0.2 in. on CD and BD.

SOLUTION:

• Determine the shear flow through the 

tubing walls

• Find the corresponding shearing stress 

with each wall thickness 

Sample Problem
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SOLUTION:

• Determine the shear flow

  

2

24kip-in.

2 3.84in. 2.34in.

kip
1.335

in.

T
q

A






• Find the corresponding shearing stress with each 

wall thickness

(a) with a uniform wall thickness, 

1.335kip in.
8.34ksi

0.160in.

q

t
   

(b) with a variable wall thickness

1.335kip in. 1.335kip in.
11.13ksi,  6.68ksi

0.120in. 0.200in.
AB AC BD CD        
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• Introduction to Torsion（扭转简介）

• Examples of Torsion Shafts（扭转轴示例）

• Sign Convention of Torque（扭矩符号规则）

• Torque Diagram（扭矩图）

• Power & Torque（功率与扭矩）

• Internal Torque & Stress - Static Indeterminacy（内力扭矩和应力
-超静定概念的引入）

• General Relations Involved in Deformable Solids（分析可变形固
体的几大基本关系）

• Kinematics（几何关系）

• Hooke’s Law for Shearing Deformation（剪切变形物理关系）

• Static Equivalency（静力等效关系）

• Torsional Stress & Angle of Twist（圆轴扭转的应力与扭转角）

Contents
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• Nonuniform Torsion of Circular Shafts（圆轴的非均匀扭转）

• Strength & Stiffness Analysis（强度和刚度条件）

• Strain Energy and its Density（扭转应变能与应变能密度）

• Polar Moments of Inertia & Section Modulus（圆截面的极惯性矩
与扭转截面系数）

• Theorem of Conjugate Shearing Stress（切应力互等定理）

• Stresses on Oblique Cross Sections（扭转轴斜截面上的应力）

• Failure Modes of Torsional Shafts（扭转轴的失效模式）

• Stress Concentrations（扭转轴的应力集中）

• Torsion of Noncircular Members（非圆截面杆的扭转）

• Membrane Analogy（薄膜比拟）

• Torsion of Thin-walled Open Shafts（薄壁开口截面杆的扭转）

• Torsion of Thin-walled Hollow Shafts（薄壁空心截面杆的扭转）
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